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gustau.camps@uv.es — http://isp.uv.es

1 / 178



1 Introduction to hyperspectral image processing
Introduction to hyperspectral image processing
The standard processing chain
Current challenges

2 Feature extraction from hyperspectral images
Physically-based feature extraction
Spatial feature extraction
Advances in spatial-spectral feature extraction

3 Supervised hyperspectral image classification
Introduction to supervised image classification
Prior knowledge and invariances
Contextual information
Multisource image fusion

4 Hyperspectral unmixing and abundance estimation
Definitions: scheme and the mixing model
Endmember determination, extraction and abundance estimation
Advances: sparse, contextual and nonlinear models

5 Retrieval of biophysical parameters
Definitions, schemes and approaches
Physical, statistical and hybrid approaches

6 Bibliography and source code

2 / 178



Introduction Processing chain Challenges Representation Summary

Part 1: Introduction to hyperspectral image processing
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Lillesand08 “Monitor and model the processes on the Earth surface and
their interaction with the atmosphere”

Liang04 “Obtain quantitative measurements and estimations of
geo-bio-physical variables”

Manolakis02 “Identify materials on the land cover analyzing the acquired
spectral signal by satellite/airborne sensors”
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Materials in a scene reflect, absorb, and emit electromagnetic radiation in
a different way depending of their molecular composition and shape.

Remote sensing exploits this physical fact and deals with the acquisition of
information about a scene at a short, medium or long distance.

Image spectroscopy allows to identify materials in the scene with
unprecedented accuracy
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Multispectral              Hyperspectral
 

Hyperspectral signals allow finer material characterization

Absorption, depth, re-emissions and modulated particular spectral features

Accurate identification of chemical components and bio-chemical processes
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Different materials produce different electromagnetic radiation spectra

The spectrum shows absorptions and emissions at different wavelengths
� e.g. reflectance for soil, dry vegetation, and green vegetation

The high spectral resolution preserves important aspects of the spectrum
(e.g., shape of narrow absorption bands), and makes differentiation of
different materials on the ground possible

The spectral information contained in a hyperspectral image pixel can
therefore indicate the various materials present in a scene
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Left: Performance comparison of the main air- and space-borne multi- and
hyperspectral systems in terms of spectral and spatial resolution.
Right: Evolution of the spatial-spectral resolution through the years.

Detailed assessments,
monitoring with infrequent 
coverage

Large scale assess-
ments, monitoring with 
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Barnsley04,Cutter04 PROBA/CHRIS

Ungar03 EO1/Hyperion

Kaufmann08,Stuffler07 EnMAP (Environmental Mapping and Analysis Program,
GFZ/DLR, Germany)

Stoll03,Moreno06 FLEX (ESA proposal)

Green08 HyspIRI (NASA GSFC proposal)

Trishchenko07 MEOS

ZASat ZASat (South African proposal, University of Stellenbosch)

HIS HIS (Chinese Space Agency)

HERO HERO - Hyperspectral Environment and Resource Observer,
Canadian Space Agency
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Some fields of application...

Geology

Mineral
detection
Cover
homogeneity

Forestry

Infected trees
Status
monitoring

Forest clearing

Sea/ice/coastal

Oil spills
monitoring

Water quality

Precision agriculture

Crop stress
location
Crop productivity

Atmosphere

Air quality,
pollutants

Global/local
change

Land management

Crop monitor-
ing/phenology

Land use/cover
change

Defense

Target detection

Mine detection

Public safety

Logistics &
operations

Fire risk, floods

Regulation & Policy
making

Urban growth

Settlements,
population
movements
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A standard image processing chain:
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Many steps and by-products from signal/image acquisition to the product

Transmission −→ Preprocessing −→ Processing

A wide diversity of problems and dedicated tools
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1 Select best features (channels, spatial) that
describe the problem (classification, retrieval)

2 Extract (lin/nonlin) combinations of spectral
channels that best describe the problem

3 Combine panchromatic and optical bands to
improve products

4 Automatically find groups of pixels in the
image (for screening, detection)

5 Estimate geo-bio-physical parameters and
variables (temperature, LAI, etc) from spectra

6 Estimate the spectral components (pure
pixels, endmembers) in a ‘mixed’ pixel

7 Compress images for storage and transmission,
while keeping most of the information

8 Remove noise and distortions due to
acquisition (sun glint) or transmission (vertical
stripes)

9 Assign semantic classes to objects (pixels,
patches, regions) in the scene
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Characteristics of remote sensing data:

High spectral resolution → moderate spatial resolutions (mixed pixels,
subpixel targets)

High dimensional data: multi-temporal, multi-angular and multi-source
fusion

Non-linear and non-Gaussian feature relations

Few supervised (labeled) information is available (high cost)

Tons of data to process in (near) real-time

Green

b
lu
e
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Representation of images: the feature space

Pixels (or eventually patches) become points in a geometric feature space

Axes have physical meaning, e.g. reflectances

Relations between features reveal non-linear and non-Gaussian structures

Credits: Image from Manolakis02.
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Spectral variability poses problems for discrimination:

In overlapping spectral regions, discrimination is almost impossible with
just a single band

Credits: Image from Manolakis02.
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Combination of bands solves the problem:

Simultaneous exploitation of the spectral bands at 0.7µm and 1.25µm
makes discrimination possible

More bands lead to linear separability theoretically

Credits: Image from Manolakis02.
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Hyperspectral imaging is an interdisciplinary, ever-growing field of Science:

Hyperspectral images provide a unique source of information for many
real-life applications:

Identify materials in the land cover
Update land cover and land use maps
Detect targets of interest (in both civilian and military applications)
Estimate the abundance and mixture of materials per pixel
Estimate biophysical parameters

High dimensionality of data pose many processing problems
Curse of dimensionality: Few labeled samples in high dimensional spaces
Many high-dim unlabeled pixels: huge computational cost and redundancy
issues
Ancillary information typically included: how? when? useful?

Credits: Image from Schaepman09 – ‘Earth system science related imaging spectroscopy–An assessment’.
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We will live at the intersection:

Remote
Sensing

Image 
Processing

Computer
Vision

Signal
Processing

Machine
Learning
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Part 2: Feature extraction from hyperspectral images
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Extracting features from remote sensing images is essential to:

Compress information for storage/transmission

Reduce (spatial and spectral) redundancy

Make image processing algorithms more robust (to noise, ]labels, dim.)

Visualize data characteristics

Understand the underlying physical relations

Extracted features can be either:
1 Spectral:

Physically-based spectral features
Statistical multivariate methods: linear and nonlinear

2 Spatial/contextual
Standard image processing descriptors
Advanced computer vision descriptors

3 Spatio-spectral: extract features from spectral patches or regions
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Motivation:

Measured spectral signal at the sensor depends on the illumination, the
atmosphere, and the surface

Physically-inspired features before applying a machine learning algorithm

Adapt standard feature extraction methods, such as PCA, to include
knowledge about the physical problem

Two case studies:

1 Cloud screening with spectral feature extraction from MERIS and AATSR

2 Vegetation monitoring by vegetation indices
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Example 1: Cloud screening with spectral features from MERIS+AATSR
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MERIS and AATSR channel locations (red boxes) superimposed to a reflectance spectra of healthy vegetation

(green thin solid line), bare soil (black dash-dotted line), and the atmospheric transmittance (blue solid line)

The spectral bands free from atmospheric absorptions contain information
about the surface reflectance

Other spectral bands are mainly affected by the atmosphere

Cloud features extracted from MERIS and AATSR products are needed to
discriminate clouds from surface

Credits: Figure from Gomez-Chova07.
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Sensor Cloud Feature Channels Involved Reference
MERIS Brightness & Whiteness (VIS) VIS bands [1-8] GomezChova07
MERIS Brightness & Whiteness (NIR) NIR bands [9 10 12 13 14] GomezChova07
MERIS Brightness & Whiteness VIS&NIR bands (without 11 & 15) GomezChova07
MERIS O2 absorption 754, 761, 778 nm GomezChova07
MERIS WV absorption 885, 900nm GomezChova07
MERIS Surface Pressure 761&754nm Lindstrot09
MERIS Surface Pressure 761/754nm ratio MERIS handbook
MERIS Bright over Land (sand) 443/754nm ratio MERIS handbook
MERIS Bright over Land (ice) 709/865nm ratio MERIS handbook
MERIS Cirrus over Ocean/Land 761/754nm ratio ; 865nm MERIShandbook
MERIS Bright Clouds 450nm Preusker08
MERIS Snow Test (reflectance) 865/890 NDI Preusker08
MERIS Cloud 412 reflectance 412/443nm ratio Kokhanovsky08
MERIS Cloud 412 reflectance 412/443nm difference Kokhanovsky08
MERIS Cloud mask 1 412/681nm ratio Guanter08
MERIS Cloud mask 2 412/708nm ratio Guanter08
MERIS Hue-Saturation-Value transf. 665, 560, 442nm Gonzalez07
AATSR Gross Cloud 12µm AATSR handbook
AATSR Thin Cirrus 11/12µm difference AATSR handbook
AATSR 11/12µm Nadir/Forward 11µm nad/fwd ; 11/12µm AATSR handbook
AATSR Visible Channel Cloud Test 870,670,550nm NDI Prata02
AATSR Snow Test 1.6µm 550nm NDI Prata02
AATSR Reflectance Gross Cloud 670nm Birks07
AATSR Reflectance Ratio 870/670nm ratio Birks07
AATSR Albedo 3.7µm Birks07
AATSR Thermal Difference 11/12µm difference Birks07
AATSR Thermal Gross Cloud 11µm Birks07
AATSR 11µm Nadir/Forward 11µm nad/fwd Muller08
AATSR 865 Nadir/Forward 865 nad/fwd Muller08

Credits: Table from Gomez-Chova07.

37 / 178



Intro Physical features Standard spatial Advanced spectral Summary

Combination of MERIS and AATSR features improves cloud detection

Cloud detection over 84 MERIS/AATSR images improves the ‘BEAM
Cloud Probability Processor’

Credits: Figures taken from Gomez-Chova10.
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Example 2: Vegetation monitoring with spectral indices

The estimation of land/vegetation parameters from remote sensing images
helps to determine their status and processes therein

Standard parameters: Leaf chlorophyll content (Chl), leaf area index
(LAI), and fractional vegetation cover (FVC)

Simple relations to predict bio-physical parameters from VIs:

y =
∑n

i=1 aiVIi

y = a + bVIc

y = a ln(b − VI) + c

(1)

where VI is a combination (typically ratios) of reflectance values in n
specific channels

VIs can be either computed using digital numbers, TOA
radiance/reflectance, or surface radiance/reflectance
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The Normalized Difference Vegetation Index (NDVI) is a widely used index:

NDVI =
NIR – R

NIR + R

CIR CIR (stretched) NDVI R-NIR scatter NDVI> 0.6

Figure : Landsat image acquired over a residential area containing different land
classes (asphalt, forest, buildings, grass, water, etc.). Left to right: standard
color-infrared (CIR) composite, stretched CIR and NDVI image, thresholded NDVI
image, and the scatter plot of all image pixels in Red versus NIR space.
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Method Formulation ρ
GI R672/R550 0.52 (0.09)
GVI (R682-R553)/(R682+R553) 0.66 (0.07)
Macc (R780-R710)/(R780+R680) 0.20 (0.29)
MCARI [(R700-R670)-0.2(R700-R550)]/(R700/R670) 0.35 (0.14)
MCARI2 1.2[2.5(R800-R670)-1.3(R800-R550)] 0.71 (0.12)
mNDVI (R800-R680)/(R800+R680-2R445) 0.77 (0.12)
mNDVI705 (R750-R705)/(R750+R705-2R445) 0.80 (0.07)
mSR705 (R750-R445)/(R705+R445) 0.72 (0.07)
MTCI (R754-R709)/(R709+R681) 0.19 (0.26)
mTVI 1.2[1.2(R800-R550)-2.5(R670-R550)]) 0.73 (0.07)
NDVI (R800-R670)/(R800+R670) 0.77 (0.08)
NDVI2 (R750-R705)/(R750+R705) 0.81 (0.06)
NPCI (R680-R430)/(R680+R430) 0.72 (0.08)
NPQI (R415-R435)/(R415+R435) 0.61 (0.15)
OSAVI 1.16(R800-R670)/(R800+R670+0.16) 0.79 (0.09)
PRI (R531-R570)/(R531+R570) 0.77 (0.07)
PRI2 (R570-R539)/(R570+R539) 0.76 (0.07)
PSRI (R680-R500)/R750 0.79 (0.08)

RDVI (R800 − R670)/
√

(R800 + R670) 0.76 (0.08)
SIPI (R800-R445)/(R800-R680) 0.78 (0.08)
SPVI 0.4[3.7(R800-R670)-1.2(R530-R670)] 0.70 (0.08)
SR R800/R680 0.63 (0.12)
SR1 R750/R700 0.74 (0.07)
SR2 R752/R690 0.68 (0.09)
SR3 R750/R550 0.75 (0.07)
SR4 R672/R550 0.76 (0.10)
SRPI R430/R680 0.76 (0.09)
TCARI 3[R700-R670)-0.2(R700-R550)(R700/R670)] 0.53 (0.13)
TVI 0.5[120R750-R550)-200(R670-R550)] 0.70 (0.10)
VOG R740/(R720 0.76 (0.06)
VOG2 (R734-R747)/(R715+R726) 0.72 (0.09)
NAOC Area in [643, 795] 0.79 (0.09)

Credits: Table from Verrelst11.
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Erosion: “Replace pixel with the minimum surrounding pixel over SE.”
>> se = strel(’disk’,3); O = imerode(I,se);

Erosion, disk 3x3

Darker features than the surroundings are enlarged

Brighter features than the surroundings shrink
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Dilation: “Replace pixel with the maximum surrounding pixel over SE.”
>> se = strel(’disk’,3); O = imdilate(I,se);

Dilation, disk 3x3

Brighter features than the surroundings are enlarged

Darker features than the surroundings shrink
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Opening: “Erosion followed by dilation”
>> se = strel(’disk’,3); O = imopen(I,se);

Opening, disk 3x3

Brighter features than the surroundings and smaller than the SE disappear

Other features (dark, or bright and large) remain unchanged
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Closing: “Dilation followed by erosion.”
>> se = strel(’disk’,3); C = imclose(I,se);

Closing, disk 3x3

Darker features than the surroundings and smaller than the SE disappear

Other features (bright, or dark and large) remain unchanged
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Top hat: “Open and then subtract the result from the original image”
>> se = strel(’diamond’,5); T = imtophat(I,se);

Top hat, diamond 3x3

Emphasizes distinct (sharp peaks) structures, extracts small elements and
details from given images

Useful to correct for uneven illumination (improve contrast)
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Bottom hat: “Closing and then subtracts the result from the original image”
>> se = strel(’diamond’,5); B = imbothat(I,se);

Bottom hat, disk 3x3

Emphasizes distinct (sharp valleys) structures

Useful to correct for uneven illumination (improve contrast)
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Morphological profile: “Openings and closings with increasing SE”
>> se = strel(’diamond’,5); repeat opening-closing operations;

MP, Close 1 MP, Close 2 MP, Close 3

Image

MP, Open 5 MP, Open 6 MP, Open 7

Pixels turn into a sequential analysis of fine-to-coarse relations

Useful as a feature vector for processing (e.g. classification)
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Edges: “Detecting discontinuities in images”
>> EDGES1 = edge(I,’canny’); EDGES2 = edge(I,’prewitt’);

Canny edges

Useful feature to detect boundaries in urban monitoring

Useful feature for object delineation
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Mean filter: “Average intensity values around every pixel”
>> H = ones(3); S = imfilter(I,H);

Mean filter, 5x5 window

Useful for noise removal and smoothing

Simple yet efficient to account for spatial pixel relations
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Median filter: “Replace a pixel with the median value of the neighborhood”
>> S = medfilt2(I);

Median filter, 3x3 window

Useful for impulsive noise removal and invariance encoding

Simple yet efficient to account for spatial pixel relations
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Standard deviation: “Replace a pixel with the local standard deviation value
of the neighborhood”
>> S = stdfilt(I);

Local standard deviation, 3x3 window

Useful to detect borders and edges

Captures the spatial variability of the intensity image
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Range filter: “Replace a pixel with the range (max−min) value of the
neighborhood”
>> R = rangefilt(I,ones(5));

Local range filter, 5x5 window

Useful for edge detection

Useful for range filtering
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Local entropy: “Replace a pixel with the entropy value of the neighborhood”
>> H = entropyfilt(I/max(I(:)));

Local entropy, 9x9 window

Useful for edge detection

Useful for saliency and detection of anomalies
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Max pooling filtering: “Replace a pixel with the maximum value of the
neighborhood”
>> maxpool = ordfilt2(I,9,true(3));

Max pooling, 3x3 window

Efficient to encode invariance to rotation

Useful in object detection
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Haar wavelet decomposition: “performs a multilevel 2-D nondecimated
wavelet decomposition with n scales and 3 orientations”
>> n = 4; w = ’db1’; >> WT = ndwt2(I,n,w);

cAA1 cAA2 cAA3 cAA4

cAD1 cAD2 cAD3 cAD4

cDA1 cDA2 cDA3 cDA4

cDD1 cDD2 cDD3 cDD4

Multiscale analysis of spatial and frequency pixel relations

Stacking features is robust to noise and powerful for discrimination
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Markov random fields: “Models a pixel with a Markov chain of the
surrounding pixels, and computes a statistic on the model weights”
>> fun = @(x) entropy(lsfit(x));

>> M = nlfilter(I,[3 3],@fun);
Entropy of the Markov random field

A simple linear predictive model is useful to capture textures

Computationally demanding and several free parameters
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Dimensionality reduction is essential before classification or regression

High number of correlated features leads to collinearity, overfitting, and
Hughes phenomenon

Most of the spectral feature extractors are based on multivariate analysis:
“project data onto a subspace that maximize explained variance, minimize
correlation, minimize error, etc.”

Linear methods are simple and intuitive, yet often not appropriate
(nonlinearity, non-Gaussianity)

Nonlinear methods give improved expressive power
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Principal component analysis (PCA)

“Find projections maximizing the variance of the data:”

PCA: maximize: Tr{(XU)>(XU)} = Tr{U>CxxU}
subject to: U>U = I

The Matlab PCA code:

>> C = cov(X);
>> [U L] = eigs(C,d);
>> Xtest projected = Xtest*U;
>> Xtest projected = Xtest*U(:,1:np);

Pros & cons:√
Simplicity√
Easy to understand√
Leads to convex optimization problems

× Unsuitable for non-linear problems
× More dimensions than points?
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Principal component analysis (PCA)

“Find projections maximizing the variance of the data:”

PCA: maximize: Tr{(XU)>(XU)} = Tr{U>CxxU}
subject to: U>U = I

The Matlab PCA code:

>> C = cov(X);
>> [U L] = eigs(C,d);
>> Xtest projected = Xtest*U;
>> Xtest projected = Xtest*U(:,1:np);

Pros & cons:√
Simplicity√
Easy to understand√
Leads to convex optimization problems

× Unsuitable for non-linear problems
× More dimensions than points?

60 / 178



Intro Physical features Standard spatial Advanced spectral Summary

Original data PCA
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Orthonormalized PLS (OPLS)

“OPLS chooses the projection U that minimizes the MSE error using a
linear regression:”

OPLS: find: U = arg min{‖Y − (XU)W‖2
F}

where: W = (XU)†Y = ((XU)>XU)−1XUY

“... which can be rewritten as” [Worsley98]

OPLS: maximize: Tr{U>X>YY>XU}
subject to: (XU)>(XU) = I

The Matlab OPLS code

>> [U,D] = eig((X’*Y)*(Y’*X),X’*X);
>> [U,D] = eig(inv(X’*X)*(X’*Y)*(Y’*X));
>> [U,D] = eigs((X’*Y)*(Y’*X),X’*X,d);
>> Xtest projected = Xtest*U;
>> Xtest projected = Xtest*U(:,1:np);
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Orthonormalized PLS (OPLS)

“OPLS chooses the projection U that minimizes the MSE error using a
linear regression:”

OPLS: find: U = arg min{‖Y − (XU)W‖2
F}

where: W = (XU)†Y = ((XU)>XU)−1XUY

“... which can be rewritten as” [Worsley98]

OPLS: maximize: Tr{U>X>YY>XU}
subject to: (XU)>(XU) = I

The Matlab OPLS code

>> [U,D] = eig((X’*Y)*(Y’*X),X’*X);
>> [U,D] = eig(inv(X’*X)*(X’*Y)*(Y’*X));
>> [U,D] = eigs((X’*Y)*(Y’*X),X’*X,d);
>> Xtest projected = Xtest*U;
>> Xtest projected = Xtest*U(:,1:np);
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Orthonormalized PLS (OPLS)

“OPLS chooses the projection U that minimizes the MSE error using a
linear regression:”

OPLS: find: U = arg min{‖Y − (XU)W‖2
F}

where: W = (XU)†Y = ((XU)>XU)−1XUY

“... which can be rewritten as” [Worsley98]

OPLS: maximize: Tr{U>X>YY>XU}
subject to: (XU)>(XU) = I

The Matlab OPLS code

>> [U,D] = eig((X’*Y)*(Y’*X),X’*X);
>> [U,D] = eig(inv(X’*X)*(X’*Y)*(Y’*X));
>> [U,D] = eigs((X’*Y)*(Y’*X),X’*X,d);
>> Xtest projected = Xtest*U;
>> Xtest projected = Xtest*U(:,1:np);
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Original data OPLS
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xi

xj

φ(xi)

φ(xj)

Similarity

measure
xi xj φ(xj)φ(xi)Κ(xi , xj) = 

φ(.)

φ(.)
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1 Map the points in X to a higher dimensional space H:

X→ Φ

2 Express model parameters in H as a linear combination of mapped data

w = Φ>α

3 Replace the dot (scalar) products by a kernel function:

K = ΦΦ>

4 Out-of-sample predictions:

P(Xtest) = Φtestw = ΦtestΦ
>α = K(Xtest ,X)α
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Valid kernels must be symmetric and positive definite similarity measures

Linear:
K(xi ,xj) = x>i xj

Polynomial:
K(xi ,xj) = (x>i xj + 1)d

Gaussian Function (RBF):
K(xi ,xj) = exp(-‖xi − xj‖2/(2σ2))

Hyperbolic Tangent:
K(xi ,xj) = tanh(a(x>i xj) + b)

Build new kernels...
K(xi , xj) = K1(xi , xj) + K2(xi , xj)
K(xi , xj) = K1(xi , xj) · K2(xi , xj)
K(xi , xj) = ηK1(xi , xj), η > 0
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Kernel principal component analysis (KPCA)

“Find projections maximizing the variance of the mapped data”

KPCA: maximize: Tr{(ΦU)>(ΦU)} = Tr{U>Φ>ΦU}
subject to: U>U = I

Representer’s theorem: U = Φ>A, A = [α1, . . . ,αn]>:

KPCA (2): maximize: Tr{A>KKA}
subject to: A>KA = I

Including Lagrange multipliers Λ: KA = ΛA

Project new data: P(X∗) = Φ∗U = Φ∗Φ
>A = K(X∗,X)A

The Matlab KPCA code

>> K = kernelmatrix(’rbf’,X,X,sigma);
>> K = kernelcentering(K);
>> [A L] = eigs(K,n);
>> Ktest = kernelmatrix(’rbf’,Xtest,X,sigma);
>> Xtest projected = Ktest*A;
>> Xtest projected = Ktest*A(:,1:np);
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Kernel principal component analysis (KPCA)

“Find projections maximizing the variance of the mapped data”

KPCA: maximize: Tr{(ΦU)>(ΦU)} = Tr{U>Φ>ΦU}
subject to: U>U = I

Representer’s theorem: U = Φ>A, A = [α1, . . . ,αn]>:

KPCA (2): maximize: Tr{A>KKA}
subject to: A>KA = I

Including Lagrange multipliers Λ: KA = ΛA

Project new data: P(X∗) = Φ∗U = Φ∗Φ
>A = K(X∗,X)A

The Matlab KPCA code

>> K = kernelmatrix(’rbf’,X,X,sigma);
>> K = kernelcentering(K);
>> [A L] = eigs(K,n);
>> Ktest = kernelmatrix(’rbf’,Xtest,X,sigma);
>> Xtest projected = Ktest*A;
>> Xtest projected = Ktest*A(:,1:np);
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Original data KPCA
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Kernel Orthonormalized Partial Least Squares (KOPLS)

“Choose the projection that minimizes the MSE:” [Worsley98]

KOPLS: maximize: Tr{(ΦU)>YY>ΦU}
subject to: (ΦU)>ΦU = I

Representer’s theorem: U = Φ>A, A = [α1, . . . ,αn]>:

Including Lagrange multipliers Λ, this problem is equivalent to

KOPLS: maximize: Tr{A>KxKyKxA}
subject to: A>KxKxA = I

This is a generalized eigenproblem: KxKyKxA = ΛKxKxA

Project new data: P(X∗) = Φ∗U = Φ∗Φ
>A = K(X∗,X)A

The Matlab KOPLS code

>> Kx = kernelmatrix(’rbf’,X,X,sigma);
>> Kx = kernelcentering(K);
>> Ky = Y*Y’;
>> Ky = kernelcentering(Ky);
>> [A, L] = eigs(Kx*Ky*Kx,Kx*Kx,n);
>> Xtest projected = K(Xtest,X)*A;
>> Xtest projected = K(Xtest,X)*A(:,1:np);
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Kernel Orthonormalized Partial Least Squares (KOPLS)

“Choose the projection that minimizes the MSE:” [Worsley98]

KOPLS: maximize: Tr{(ΦU)>YY>ΦU}
subject to: (ΦU)>ΦU = I

Representer’s theorem: U = Φ>A, A = [α1, . . . ,αn]>:

Including Lagrange multipliers Λ, this problem is equivalent to

KOPLS: maximize: Tr{A>KxKyKxA}
subject to: A>KxKxA = I

This is a generalized eigenproblem: KxKyKxA = ΛKxKxA

Project new data: P(X∗) = Φ∗U = Φ∗Φ
>A = K(X∗,X)A

The Matlab KOPLS code

>> Kx = kernelmatrix(’rbf’,X,X,sigma);
>> Kx = kernelcentering(K);
>> Ky = Y*Y’;
>> Ky = kernelcentering(Ky);
>> [A, L] = eigs(Kx*Ky*Kx,Kx*Kx,n);
>> Xtest projected = K(Xtest,X)*A;
>> Xtest projected = K(Xtest,X)*A(:,1:np);
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Original data KOPLS
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Data:
AVIRIS image taken over NW Indiana’s Indian Pine test site in June 1992
145× 145 image size, 220 features (bands), 16 land cover classes
80% for training and 20% for testing
Classifier: linear classifier on top of different number of features

Results:
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RGB composite

Supervised feature extraction often better than unsupervised
Higher accuracies lead to smoother maps
kOPLS excels in performance, needs few components
kOPLS reduce false alarm rates in large homogeneous vegetation areas
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Extracting features from remote sensing images is essential to:
Compress information for storage/transmission
Reduce (spatial and spectral) redundancy
Visualize data characteristics

Spectral features rely either on physical prior knowledge or statistical
techniques that optimize a sensible criterion

Spatial features rely on image processing operations builing on the
classical smoothness assumption in the image space

Linearity and Gaussianity are strong assumptions in general

Nonlinear methods using kernels can be convenient due to high robustness
to low-sized datasets and high input space dimensionality
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Part 3: Supervised hyperspectral image classification

77 / 178



Intro Supervised Invariances Contextual SAR Ancillary Summary

Hyperspectral image classification is a challenging problem!

Philosophical problems: infinite diversity of the Earth covers
What is a class? How many classes in the scene?
What is a forest? How many forest classes are there?

Methodological problems:
High dimensionality of pixels and scarcity of labels
Hughes phenomenon, overfitting and generalization capabilities

Practical and operational problems:
High cost for gathering labeled data (economic, time, resources)
Acquisition process and distortions in the images imply strong nonlinearities
Atmospheric and illumination effects may ruin the validation data
Heavy image preprocessing: geometric and atmospheric corrections
Need expert knowledge in pre- and postprocessing
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Statistical classifiers have been readily applied to the problem:

Parametric

Assume a particular
density distribution
LDA, GMM

Non-parametric

No assumption about
the data distribution
k-NN, NNETS, TREES, SVM

Supervised

Need labeled
input-output
pairs
LDA, k-NN, TREES,
SVM

Unsupervised

No need labels
k-means, EM-GMM,
SOM

Semisupervised

Use both
labeled and
unlabeled data
Laplacian SVM,
TSVM, graphs

One-class

Interest in
detecting just
one class
SAM, OSP, RX,
OC-SVM

Not too much success in parametric classifiers, as some assumptions break

Currently, nonparametric classifiers and committees of experts excel!

k-NN: good compromise between accuracy and computational cost

Support vector machines (SVM) typically outperform the rest
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Classifiers:

Linear discriminant analysis (linear, quadratic, Mahalanobis)

k-Nearest neighbors (KNN)

Neural networks (NNETS)

Support Vector Machines (SVM)

Analysis:

Accuracy of classifiers (OA, Kappa, Confusion matrix)

Robustness to dimensionality (apply before PCA?)

Robustness to number of labeled samples

Computational cost
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Linear discriminant analysis (LDA): “Fits a Gaussian to each class data”

Linear discriminant analysis (‘linear’): Fit a multivariate Gaussian to each
group/class through a joint covariance matrix

>> yp=classify(Xtest,Xtrain,Ytrain,’linear’);

Linear discriminant analysis (‘quadratic’): Fit a multivariate Gaussian to
each group/class through a class-dependent covariance matrix

>> yp=classify(Xtest,Xtrain,Ytrain,’quadratic’);

Linear discriminant analysis (‘mahalanobis’): Fit a multivariate Gaussian
to each group/class through a class-dependent Mahalanobis distance

>> yp=classify(Xtest,Xtrain,Ytrain,’mahalanobis’);
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k nearest neightbor (k-NN): “is a non-parametric memory-based classifier
that assigns the test label from the closest training point(s)”

We can play around with the notion of distance (e.g. Euclidean, SAM,
etc.)

k-NN is a rather slow method with many samples and high k

k = 1 use to work in real applications!
>> yp = knnclassify(Xtest,Xtrain,Ytrain,’euclidean’);
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Neural networks (NNETS): “adjust a fully-connected nonlinear
hierarchical structure made of simple neurons (point-wise nonlinearity) by
minimizing the MSE in the output layer”

Binary problems: binary coding of the output (y ∈ {0, 1}).

Multiclassification: as many output neurons as classes
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Support Vector Machines (SVM): “non-parametric kernel method that fits
an optimal linear hyperplane separating the classes in a higher dimensional
representation (feature) space”

SVMs optimize two parameters: C to adjust the level of regularization
(prevent overfitting) and the σ parameter of the RBF kernel (mapping
space dimensionality)

SVMs are fast to train and apply in moderate size problems

SVMs are slow with many labeled examples

SVMs generally outperform the rest in hyperspectral image classification
>> ypred = svm classify(Xtest,X,Y);
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The solution of the SVM:

ŷj = f (xj) = sign(w>φ(xj) + b) = sign

( n∑
i=1

αiyiK(xj , xi ) + b

)
The solution is sparse: only few examples xi with αi 6= 0 are important

Support vectors: those that define the margin and are misclassified
examples

xii

xj

j

ξ

ξ

w

y =+1i

y =-1i
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Valid kernels must be symmetric and positive definite similarity measures

Linear:
K(xi ,xj) = x>i xj

Polynomial:
K(xi ,xj) = (x>i xj + 1)d

Gaussian Function (RBF):
K(xi ,xj) = exp(-‖xi − xj‖2/(2σ2))

Hyperbolic Tangent:
K(xi ,xj) = tanh(a(x>i xj) + b)

Build new kernels...
K(xi , xj) = K1(xi , xj) + K2(xi , xj)
K(xi , xj) = K1(xi , xj) · K2(xi , xj)
K(xi , xj) = ηK1(xi , xj), η > 0
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Example 1: Pixel-wise hyperspectral image classification

Standard image: 9 crop classes, Indiana (USA), 1999.

AVIRIS sensor: 220 bands, 145× 145 pixels.

Only spectral information is considered at this point.

Accuracy and robustness
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Non-linear SVM (RBF kernel) yields the best results when compared to
LDA and RBF neural nets.

SVMs show an important gain when working with low number of samples
and high dimension, high levels of input noise, and moderate
computational cost
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Visual inspection

RGB Ground truth
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Example 2: Spatial-spectral multispectral image classification

Multispectral image: 9 crop classes, Zürich, 2002.

Quickbird sensor: 4 bands + 22 spatial features (top/bottom hat).

Both spatial and spectral information is considered.

Accuracy and robustness without contextual information:
Training OA [%] Kappa

pixels LDA Trees k-NN SVM MLP LDA Trees k-NN SVM MLP

115
µ 60.43 68.62 68.43 74.99 72.94 0.53 0.61 0.61 0.69 0.67
σ (5.13) (3.85) (1.63) (2.25) (1.55) (0.06) (0.05) (0.02) (0.03) (0.02)

255
µ 60.19 71.25 73.65 77.31 76.32 0.53 0.64 0.67 0.72 0.71
σ (3.25) (1.79) (3.79) (1.23) (1.20) (0.03) (0.02) (0.05) (0.02) (0.02)

1155
µ 62.82 76.78 80.92 79.49 79.41 0.56 0.71 0.76 0.74 0.74
σ (2.08) (0.90) (0.47) (0.73) (0.38) (0.02) (0.01) (0.01) (0.01) (0.01)

2568
µ 62.68 78.59 81.38 80.42 79.42 0.56 0.74 0.77 0.76 0.74
σ (1.94) (0.32) (0.24) (0.34) (1.09) (0.02) (0.01) (0.01) (0.01) (0.01)

Nonparametric methods (SVMs, MLP) excel

Lazy learner k-NN shows good performance with enough samples

Poor performance of linear parametric classifiers as the LDA
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Example 2: Spatial-spectral multispectral image classification

Multispectral image: 9 crop classes, Zürich, 2002.

Quickbird sensor: 4 bands + 22 spatial features (top/bottom hat).

Both spatial and spectral information is considered.

Accuracy and robustness with contextual information:
Training OA [%] Kappa

pixels LDA Trees k-NN SVM MLP LDA Trees k-NN SVM MLP

115
µ 72.93 71.00 75.69 83.37 77.37 0.67 0.65 0.70 0.80 0.72
σ (2.85) (2.97) (1.28) (2.40) (2.48) (0.03) (0.03) (0.02) (0.03) (0.03)

255
µ 77.23 73.47 80.53 85.91 80.61 0.72 0.68 0.76 0.83 0.76
σ (1.41) (1.64) (1.34) (1.94) (0.99) (0.02) (0.02) (0.02) (0.02) (0.01)

1155
µ 78.35 80.45 87.32 88.03 84.29 0.74 0.76 0.84 0.85 0.81
σ (0.69) (0.73) (0.63) (1.68) (1.77) (0.01) (0.01) (0.01) (0.02) (0.02)

2568
µ 78.61 81.59 87.26 87.17 85.10 0.74 0.77 0.84 0.84 0.82
σ (0.57) (0.89) (0.61) (0.85) (1.05) (0.01) (0.01) (0.01) (0.01) (0.01)

Contextual information is beneficial for all models, +5% and 10%

Contextual information improves SVM and NN much more

Without spatial features, k-NN is the best option!
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Ground survey LDA (78.35, 0.74) Class. tree (80.45, 0.76)

k-NN (87.32, 0.84) SVM (88.03, 0.85) MLP (84.29, 0.81)

SVM and k-NN return detect all major structures of the image

McNemar’s test confirmed visual estimation of the quality

SVM map is significantly better than the others, followed by the k-NN and
NN maps
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Hyperspectral image classification needs strong regularization:

SVM imposes regularization naturally by maximum margin

Advanced classification focuses on other forms of regularization:
Reduce dimensionality via feature selection and extraction
Include information contained in unlabeled samples
Include synthetically generated data encodes invariance properties
Impose spatial homogeneity of images: include spatial information
Include multisource data
Include ancillary information from expert’s knowledge (VIs, ecosystems
maps, climate regions, etc)
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?

The example assumes invariance to horizontal transformations

Given the training data, the point ? is hard to classify

Modify the SVM to incorporate prior knowledge
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?

Step 1 Train a SVM and find the SVs
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?

Step 1 Train a SVM and find the SVs

Step 2 VSVs: perturbate SVs to which the solution should be invariant
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Step 1 Train a SVM and find the SVs

Step 2 VSVs: perturbate SVs to which the solution should be invariant

Step 3 Train a SVM with both SVs and VSVs
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Example 1: encoding invariance to rotations:

Quickbird image + 18
spatial features

Size: 329× 347 pixels

9 classes

VSVM encodes
invariance to rotation!
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RGB GT SVM (76.14, 0.73) VSVM (83.15, 0.80)

Both classifiers show high classification scores

VSVM improves classification score over +7%

VSVM is however more computationally demanding
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Example 2: encoding invariance to shadows and illumination changes:

Multispectral image acquired by DAIS7915 over Pavia (Italy) [CampsValls11]

9-class urban classification problem
Dominated by directional features and relatively high spatial resolution
Presence of shadows in the streets and the bridge
50 training spatial-spectral samples only (4×4 patches)

Invariance coding: exponential-decay function in [0.5, 1.76]µm [Yamazaki09]

RGB SVM (0.79±0.11) VSVM (0.84±0.09)
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How to integrate multi-source information?

Spatial features

Textural features

Time-varying features

Multi-sensor features

Multi-angular features

Optical,  xi
w Radar,  xi

r Contextual,  xi
c Spatial,  xi

s
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Taxonomy of spatial-spectral classification approaches:

Type of Approach Model Idea

Spatial filters ex-
traction

Co-occurrence Extract texture based on statistics of pairs
of pixels in a neighborhood

EMP Multiscale mathematical morphology
(based on size)

EMAP Multiscale mathematical morphology (va-
riety of attribute types)

Spatial-spectral
segmentation

Segmentation and classifi-
cation based on majority
voting

All pixels are assigned to the most frequent
class inside a segmented region

Segmentation and classifi-
cation based on markers

Most reliably classified pixels are selected
as “region markers” for segmentation

Semi-supervised hierarchi-
cal clustering tree

Returns both classification and confidence
maps. Active learning used to select infor-
mative samples.

Advanced spatial-
spectral

Composite and multiple
kernels

Balances between spatial and spectral in-
formation with dedicated kernels

classification Graph kernels Takes into account higher order relations
in each pixel neighborhood

MRF Markov Random Field Modeling (proba-
bilistic)
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Stacked approach

Stacking features that characterize a pixel:

xi ← [xωi , x
c
i , x

r
i , x

ρ
i , x

s
i , x

t
i , ...]

Compute matrix K and solve an SVM with the new samples xi .

SVM

Stacking features in the
original input space, xi

Classification
yi

K(xi,xj)

Problems:
1 Dimensionality of the samples is increased extraordinarily!
2 Cross-relationships among features are not taken into account.
3 This would be impractical for neural networks, for example.
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Kernel-based spatial-spectral HSI classification

Some properties of kernel methods (and SVM):

K(xi , xj) = K1(xi , xj) + K2(xi , xj)
K(xi , xj) = K1(xi , xj) · K2(xi , xj)
K(xi , xj) = ηK1(xi , xj), η > 0

Stacking features in the kernel space implies direct sum of kernels

SVM

Classification
yi

K(xi
w, xj

w) K(xi
r, xj

r) K(xi
c, xj

c) K(xi
s, xj

s)

K(xi, xj)
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Overall accuracy [%] κ statistic

Spectral classifiers
Euclidean [Tadjudin98] 48.23 —
bLOOC+DAFE+ECHO [Tadjudin98] 82.91 —
Kω [CampsValls04] 88.55 0.87

Spatio-spectral classifiers [CampsValls06]
Mean

Ks 84.55 0.82
K{s,ω} 94.21 0.93
Ks + Kω 92.61 0.91
µKs + (1− µ)Kω 95.97 0.94
Ks + Kω + Ksω + Kωs 94.80 0.94

Mean and variance
Ks 88.00 0.86
K{s,ω} 94.21 0.93
Ks + Kω 95.45 0.95
µKs + (1− µ)Kω 96.53 0.96

Linear methods offer poor results

The proposed classifiers improve results in all cases (+[5-11]%)

Simplest kernel combinations yield very good results
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Ground truth Spatial (84.55%)(a) (b)

Spectral (88.55%) Spatio-spectral (95.53%)(c) (d)

More homogeneous classification maps

State of the art results

Easy framework for multisource data fusion
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Combine advanced spatial features and composite SVM

RGB GT SVM EMAP EMAP+CSVM EMAP+GCSVM
ω s ω + s ω + s

(81.01) (89.89) (97.80) (98.09)

ROSIS-03 Pavia University area data set (103 spectral channels and
spatial resolution 1.3m), 9 classes

Spatial components:

Benediktson11 Extended Morphological Profiles (EMP)
CampsValls06 Cross-kernels composite SVM (CSVM)

Li13 Generalized composite kernels (GCSVM)
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Multi-sensor fusion kernels

1 Idea: Build dedicated kernels for the optical (xo
i ), and the radar (xr

i )
feature samples, and combine them in the kernel.

2 Three formulations:
The stacked features approach:

xi = [xoi , x
r
i ], K{o,r} ≡ K(xi , xj ) = 〈φ(xi ),φ(xj )〉

The direct summation kernel:

K(xi , xj ) = Ko(xoi , x
o
j ) + Kr (xri , x

r
j )

The cross-information kernel:

K(xi , xj ) = Ko(xoi , x
o
j ) + Kr (xri , x

r
j ) + Kor (xoi , x

r
j ) + Kro(xri , x

o
j )
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Example: Detection of classes ‘urban’ vs. ‘non-urban’ [Camps-Valls08]

‘Urban Expansion Monitoring (UrbEx) ESA-ESRIN DUP’ Project

2 sensors (ERS2 SAR y Landsat TM)

2 dates (1995 and 1999) over Rome

Features and pre-processing

1 Images were co-registered with ISTAT data (at subpixel level, <15m res.)

2 SAR images were filtered for ‘speckle’.

3 Original features: 7 spectral bands, 2 backscattering intensities plus
coherence.

4 Additionally: (i) optical features are mean-filtered, and (ii) SAR images
are Gabor-filtered, at different scales (θ = 1, . . . , 4) and orientations ({0,
45, 90, 135})
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Accuracy and flexibility

Different kernel-based methods integrating spectral, contextual, textural
and temporal information.

Different levels of complexity and versatility.

Linear and non-linear (RBF) kernels.

Spatio Multi- Temporal
spectral sensor Sum Crossed Weighted

SVM Sum Standard 83.2 (0.45) 68.2 (0.61) 70.4 (0.64)
(LIN) Crossed Standard 81.4 (0.49) 69.2 (0.62) 71.4 (0.63)

Sum Sum 84.1 (0.51) 70.2 (0.63) 73.4 (0.72)
SVM Sum Standard 91.4 (0.67) 83.1 (0.70) 89.5 (0.78)

(RBF) Crossed Standard 92.1 (0.69) 89.2 (0.71) 88.8 (0.77)
Sum Sum 93.2 (0.77) 94.3 (0.78) 93.3 (0.81)

All the proposed temporal kernels improve the results of (1) considering
the spectral info alone, (2) or even the spatio-spectral information.

The weighted summation kernel is the best choice.

In all cases, non-linear RBF kernels yield better results.
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Visual inspection

Ground truth, 1999 Sum (0.77)

Crossed (0.78) Weighted (0.81)

non-urban urban unknown
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Why not considering additional information?

Vegetation indices, e.g. NDVI

Clustering maps

Max vote of all trained classifiers

Abundance maps

Ecosystems maps

Climate regions

...

Nice idea, yet problematic: dimensionality increases again!
Solution: feature selection together with sparse classifiers!
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Hyperspectral image classification is a challenging problem

High dimensional feature spaces scarcely populated!

Statistical approaches:
Supervised algorithms
Unsupervised algorithms
Semisupervised algorithms
One-class and target detection

Kernel methods are the current state-of-the-art classifiers

More info in the classifiers implies improved signal model
More samples (by sampling or synthesizing)
More meaningful features
More concurrent sensors (SAR, LiDAR, VHR, etc)
Additional ancillary information
Multitemporal information
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Part 4: Spectral unmixing and abundance estimation
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Unmixing hyperspectral pixels ...

With a limited spatial resolution, spectral vectors are no longer pure but
mixtures of the spectral signatures of the materials present in the scene

A small fraction of the available pixels can be considered as pure, i.e.
composed by a single material

The field of spectral mixture analysis (or spectral unmixing) is devoted
both to identify the most probable set of pure pixels (called endmembers)
and to estimate their proportions (called abudances) in each pixel

When the endmembers have been identified, every single pixel in the
image can be synthesized as a linear (or nonlinear) combination of them
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The main applications of spectral unmixing:

1 Standard mapping applications.

Keshava02 Excellent introduction to crop and mineral mapping
Sohn97 Abundance estimation of vegetation in deserts

Adams95 Abundance maps for image classification to detect
landcover changes in the Amazonia

Roberts98 multiple endmember spectral mixture models to map
chaparral

Elmore00 quantify vegetation change in semiarid environments
Goodwin05 assessed plantation canopy condition from airborne

imagery using spectral mixture analysis via fractional
abundance estimation

Pacheco10 crop residue mapping in multispectral images
Zhang04 deconvolution of lichen and rock mixtures
Wu2004 to monitor urban composition using ETM+ images

Dop11 extract features and then performing supervised urban
image classification
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The main applications of spectral unmixing:

2 Multitemporal studies.

Shoshany02 a multi-date adaptive unmixing was applied to analyze
ecosystem transitions along a climatic gradient

Lobell2004 inferred cropland distributions from temporal unmixing of
MODIS data

Gomez11 multitemporal unmixing of medium spatial resolution
images was conducted for landcover mapping

3 Multisource models.

Puyou94 multiple linear regression as a tool for unmixing coarse
spatial resolution images acquired by AVHRR

GarciaHaro96 alternative approach which appends the high spatial
resolution image to the hyperspectral data and computes a
mixture model based on the joint data set.

Zhukov99 spatial and spectral data fusion
Amoros11 spatial unmixing technique to obtain a composite image

with the spectral and temporal characteristics of the
medium spatial resolution image and the spatial detail of
the high spatial resolution image
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Illustration of the spectral linear mixing process
A given material is assumed to be constituted at a subpixel level by patches of
distinct materials mi contributing linearly through a set of weights (or
abundances) αi to the acquired reflectance r

Radiation 
source

m2 m3

α1 α2 α3

Satellite sensor

λ [nm]

m1α1

m2α2

m3α3

= r

+

+

+

m1
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Linear versus nonlinear mixing model:

Linear mixture model assumes that endmember substances are sitting
side-by-side within the FOV

Nonlinear mixture model:
Endmember components are randomly distributed throughout the FOV
Multiple scattering effects

Radiation 
source

Satellite sensor Radiation 
source

Satellite sensor
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Two nonlinear mixing scenarios:

The intimate mixture model (left): the different materials are close

The multilayered mixture model (right): interactions with canopies and
atmosphere happen sequentially or simultaneously

Radiation 
source

Satellite sensor Radiation 
source

Satellite sensor
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Let’s go on with a linear unmixing model:

Simple, tractable, mathematically convenient

Effective in many real settings

Acceptable approximation of the light scattering mechanisms

Computationally feasible

Radiation 
source

m2 m3

α1 α2 α3

Satellite sensor

λ [nm]

m1α1

m2α2

m3α3

= r

+

+

+

m1
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The linear mixing model:

r = Mα+ n

r be a B × 1 reflectance vector

B is the total number of bands

mi is the signature of the ith endmember, i = 1, . . . , p

M = [m1,m2, . . . ,mp] is the mixing matrix and contains the signatures of
the endmembers present in the observed area,

α = [α1, α2, . . . , αp]> is the fractional abundance vector

n = [n1, . . . , nB ]> models additive noise in each spectral channel.

The linear unmixing problem:

r = Mα+ n s.t. α ≥ 0, 1>p α = 1N

Given a set of reflectances ri , i = 1, . . . ,N, estimate appropriate values for
both M and α

Two physically reasonable constraints:
1 all abundances must be positive, αi ≥ 0,
2 they have to sum one,

∑p
i=1 αi = 1
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The simplex representation: Illustration of the simplex set C for p = 3.
Points in red denote the available spectral vectors r that can be expressed as a
linear combination of the endmembers mi , i = 1, . . . , 3, (vertices circled in
green). The subspace formed defined by these endmembers is the convex hull C
of the columns of M

Credits: Figure from Bioucas-Dias11.
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The minimum volume simplex approximation not always works:

Left and middle: identifiable!

Right: not identifiable because of a highly mixed scenario!

Alternative: statistical models may better capture the data distribution

Credits: Figure from Bioucas-Dias11.
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The minimum volume simplex approximation may be affected by noise:

Endmembers m2 and m3 are too close, thus M is badly conditioned.

The effect of noise is evident, as represented in the uncertainty regions

A preliminary step is to check the SNR (and eventually apply MNF):

SNR =
E[‖r‖2]

E[‖n‖2]
=

trace(Cr )

trace(Cn)

>> snr=trace(cov(X))/trace(cov(N))

Credits: Figure from Bioucas-Dias11.
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Spectral unmixing steps:

a. Dimensionality reduction. Spectral unmixing intrinsically assumes that the
dimensionality of hyperspectral data is lower and can be expressed in terms
of the endmembers. Some methods require a previous dimensionality
reduction, either feature selection or extraction, e.g. PCA, MNF, ...

b. Endmember extraction. Search of a proper vector basis to describe all the
materials in the image:

Find the most extreme spectra, which are the purest and those better
describing the vertices of the simplex
Find the most statistically different pixels

c. Abundance estimation. Exploits linear or nonlinear regression techniques
for estimating the mixture of materials, called abundance, in each image
pixel, e.g. linear regression, neural networks and support vector regression

Unmixing

Feature selection
or extraction Abundance maps

Endmember signatures

Endmember
extraction

Abundance
estimation
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The first step in the spectral unmixing analysis tries to estimate the
number of endmembers present in the scene

The number of endmembers is assumed to be lower than the number of
bands B

Statistical and geometrical interpretation: spectral vectors lie in a
low-dimensional linear subspace

Endmember determination reveals the intrinsic dimensionality of the data
and reduces the computational complexity of the unmixing algorithms
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How to estimate the intrinsic dimensionality of the subspace

1 Most of the methods involve solving eigenproblems

Jollife86 PCA looks for the explained variance of the projected data
(scores)

Lee90 MNF looks for the explained variance of the projected
data and discounts the noisy components

Bioucas-Dias05 HySime looks for the explained SNR by minimizing the
MSE error term

2 Information-theoretic approaches

Wang06 ICA and projection pursuit looks for a ‘right’ number of
statistically independent components

Ifarraguerri00 Minimum description length (MDL)
Harsanyi93 Neyman-Pearson detection method (called HFC)

Chang04 Virtual dimensionality (VD) finds the highest number for
which the correlation matrix have smaller eigenvalues than
the covariance matrix

Chang04 Noise-whitened HFC (NWHFC) removes the second-order
noise statistical correlation

3 Nonlinear (higher-order) methods and manifold learning

Bachmann06 ISOMAP
Yangchi05 locally linear embedding (LLE)

126 / 178



Intro Models Determination Extraction Abundances Advances Summary

Standard benchmark hyperspectral image dataset:

AVIRIS Cuprite reflectance data set,
http://aviris.jpl.nasa.gov/html/aviris.freedata.html

AVIRIS spectrometer over the Cuprite Mining area in Nevada (USA) in
1997

Widely used to validate the performance of many spectral unmixing and
abundance estimation algorithms

U.S. Geological Survey (USGS) in the form of various mineral spectral
libraries, http://speclab.cr.usgs.gov/spectral-lib.html

Many reported materials: buddingtonite, calcite alunite, kaolinite, and
montmorillonite, chalcedony, dickite, halloysite, andradite, dumortierite,
and sphene.

Most mixed pixels in the scene consist of alunite, kaolinite, and muscovite
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PCA, MNF, and HySime
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PCA: 8 components retain more than 99.95% of the explained variance

MNF yields a higher number of distinct pure pixels, p=13

HySime estimates p=18 (minimum MSE)

HFC and NWHFC are estimated with the false-alarm probability set to
different values Pf = {10−2, . . . , 10−6}, and give rise to p around 14

PF

Method 10−2 10−3 10−4 10−5 10−6

HFC 23 20 17 16 14
NWHFC 21 18 16 14 12
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Two main families of methods: geometrical vs statistical
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Let’s see the main differences

Several representative methods: 1) pure-pixel geometrical approaches
(IEA, VCA, PPI and NFINDR); 2) SISAL for geometrical minimum volume
approaches; 3) ICA for the information-theoretic-based methods; and 4)
SVDD target detection and EIHA for the machine learning based
approaches

Scores between estimated m̂ and closest m endmember in the USGS db:

RMSE =

√
1

N

∑N
i=1(m̂i −mi )2

SAM = acos

(
m̂>m

‖m̂‖‖m‖

)
SID(m̂,m) =

∑
i pi log

(
pi

p̂i

)
+
∑

i p̂i log

(
p̂i

pi

)
, p = m/

∑
i mi

We will seek for p = 14 endmembers using all methods
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All methods achieve RMSE<0.2, except for PPI and ICA

Similar trends are observed for SAM and SID

VCA outperformed the rest of the methods in accuracy (in all measures)

VCA showed very good computational efficiency, closely followed by
SVDD, SISAL and IEA

ICA does not work all (does not meet problem assumptions)

Very good performance of SVDD
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Estimated signatures are in general close to the laboratory spectra
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Linear standard models for estimation

The unconstrained least-squares problem is simply solved by

α̂ = M†r = (M>M)−1M>r

The sum-to-one constraint means that the LS problem is constrained by∑
αi = 1, which can be solved via Lagrange multipliers

The non-negativity constraint is not as easy to address in closed-form

Linear advanced models for estimation

Harsanyi94 Nonnegative constrained least squares and fully constrained
least squares

Keener06 Minimum variance unbiased estimator (MVUE): under the
assumption of additive noise, n, with covariance, Cn, the
minimum variance estimate of the abundances reduces to

α̂ = (M>C−1
n M)−1M>C−1

n r

Li04 use wavelet features to improve the linear estimation

Debba06 used derivative spectra in simulated annealing procedures

Chang06 uses a weighted abundance-constrained linear spectral mixture
analysis

Bioucas10 reviews the field, including sparse LASSO regression
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Nonlinear models for estimation

An easy way to compensante the (strong) assumption of linear mixture
models

Several regression approaches available

Atkinson97 proposes multilayer perceptrons
Schowengerdt97 introduces nearest neighbor classifiers

Brown00 includes support vector machines for unmixing
Broadwater09 extends the NNCLS method to kernel space

A simple algorithm for doing nonlinear regression with kernels consists of
iterating the equations:

α̂ = (K(M,M))−1 [K(M, r)− λ]

λ = K(M, r)− K(M,M)α̂,

where λ is the Lagrange multiplier vector used to impose the
non-negativity constraints of the estimated abundances. Nevertheless, the
method does not incorporate the sum-to-one constraint. We refer to this
method as the Kernel NonNegativity Least Squares (KNNLS).
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Least Squares Abundance Estimation

USGS #386 USGS #138 USGS #387 USGS #126 USGS #247 USGS #327 USGS #244

USGS #245 USGS #248 USGS #500 USGS #328 USGS #70 USGS #39 USGS #299

The obtained maps nicely resemble the available geological maps.

Linear and nonlinear methods yield similar results

The use of the KNNLS achieves more detailed description of the spatial
coverage (see e.g. minerals ]386 and ]245) or less noisy maps (see e.g.
minerals ]126, ]139, and ]299)

KNNLS has two problems: 1) tuning of the σ parameter for the kernels,
and 2) the sum-to-one constraint is met in a trivial way.
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Recent years have witnessed advances in three main directions

Sparse models Spectral vectors can be expressed as linear combinations of a
very few pure spectral signatures obtained from a (potentially
very large) spectral library

Contextual information Inclusion of spatial information helps regularize the
solution as close-by pixels in the image should
correspond/identify similar elements

Nonlinear models more complex models of the mixture process are assumed:
nonlinear mixing holds when the light suffers multiple
scattering or interfering paths, which implies that the acquired
energy by the sensor results from the interaction with many
different materials at different levels or layers
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Sparse models:

Intuition/Motivation Spectral vectors can be expressed as linear combinations
of a very few pure spectral signatures obtained from a
(potentially very large) spectral library

Candes06,Donoho06,Blumensath09 Sparse reconstruction/compressive sensing:
A sparse signal is exactly recoverable from an underdetermined
linear system of equations in a computationally efficient
manner via convex/non-convex programming

The linear sparse mixing model:

A standard linear mixing model

r = Mα+ n

Only some components of α are active, many shrink to zero!

The sparse unmixing problem: given r and M, find the sparsest solution:

min
α
‖α‖0 s.t. r = Mα

Nice idea: interpretable and compact solutions!

Problem: this is an NP-hard problem!
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Convex relaxation optimization strategies

Chen01 Basis Pursuit (BP)

min
α
‖α‖1 s.t. r = Mα

Chen01 BPDN - BP denoising

min
α
‖α‖1 s.t. ‖r −Mα‖2 ≤ δ

Tibshirani96 (LASSO)

min
α
‖r −Mα‖2

2 + λ‖α‖1

Approximation strategies

Ji08 Bayesian CS

Needell09 Matching Pursuit

Blumensath09 Iterative Hard Thresholding (IHT)

Garg09 Gradient Descent Sparsification (GDS)

Foucart10 Hard Thresholding Pursuit (HTP)

Villa12 Message Passing (MP)
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Results on the USGS Cuprite dataset

Bad news: Hyperspectral libraries have poor theoretical bounds of
recovery, i.e. low restricted isometric property (RIP)

Good news: Hyperspectral mixtures are highly sparse, very often p ≤ 5

Surprising fact: Convex programs (BP, BPDN, LASSO, ...) yield much
better empirical performance than non-convex state-of-the-art competitors

Credits: Figure from Bioucas-Dias12.
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Spatial information: Inclusion of spatial information helps regularize the
solution as closeby pixels in the image should correspond/identify similar
elements
Main approaches:

Zortea09 Spatial preprocessing (SPP)
estimates for each pixel a
spatially-derived factor to
weight relevance

Plaza02 Automatic morphological
endmember extraction
(AMEE) algorithm for
spatial-spectral endmember
extraction

Rogge07 spatial spectral endmember
extraction (SSEE) uses a
spatial averaging of
spectrally similar
endmember candidates
found via singular value
decomposition (SVD)

Credits: Figure from Plaza13.
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All methods improve performance with spatial information, and there is an
optimal window

Most of the elements are better detected

Credits: Figure from Plaza13.
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Nonlinear unmixing approaches consider either:

A fully physically-based model requires inferring the spectral signatures
and material densities based on the radiative transfer theory

Alternative machine learning (statistical) approaches (plus prior physical
constraints)

Main approaches:

Borel-Gerst94 A multilayer model that gives rise to an infinite sequence of
powers of products of reflectances

A second-order (bilinear approximation) is typically enough

Hapke81 Microscopic mixing model at the albedo level and not at the
reflectance level

Broadwater09 proposed alternatives with (physically-inspired) kernel methods

Halimi11 Generalized bilinear models to handle scattering effects, e.g.,
occurring in the multilayered scene

Guilfoyle01,Liu04,Altmann11,Licciardi11 Neural networks to nonlinearly reduce
dimensionality and find a sparse basis

Altmann12 Supervised nonlinear spectral unmixing using a post-nonlinear
mixing model

Heylen11,Heylen12 follows a similar approach to NFINDR: maximize the
simplex volume computed with geodesic measures on the data
manifold
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Moderate spatial resolution in hyperspectral images pose the mixing
problem

Pixels are no longer pure, but a mixture of endmembers

Linear and nonlinear mixture models can be adopted, yet the LMM
dominates

Many algorithmical approaches to find the purest/extreme pixels in the
image

Geometrical (pure pixel or min-volume)
Statistical (information theory or machine )

Three main steps to solve the problem
Determine/estimate how many endmembers are there
Find them
Use them for prediction

Very active research topic, many novel approaches out there:
Sparse regression models
Structured and collaborative regression
Spatial-spectral information
Prior knowledge and physics in the statistical models
Parallelization of algorithms for fast unmixing
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Part 5: Retrieval of biophysical parameters
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The problem:

Biophysical parameter retrieval is an essential step in modeling the
processes occurring on Earth and the interactions with the atmosphere

The analysis can be done at local or global scales by looking at
bio-geo-chemical cycles, atmospheric situations, ocean/river/ice states,
and vegetation dynamics [Lillesand08, Liang08, Rodgers00]

Land/vegetation parameters are difficult to estimate [Liang04, Liang08]

Main parameters: temperature, crop yield, biomass, leaf area coverage,
chlorophyll content [Liang04, Liang08]

The objective: Transform measurements into biophysical parameter estimates
The data:

Input data: satellite/airborne spectra, in situ (field) radiometers, or
simulated spectra by RTMs

Output results: estimation of a bio/geo-physical parameter
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Forward modeling: simulation of a database of reflectance spectra and
parmaters pairs

Inverse modeling: numerical/statistical inversion of the models from
remote sensing data to estimate the parameters
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Variables 
of interest

Additional
variables

Observation
configuration

Prior
knowledge

Retrieval
algorithm

Radiative
transfer

Remote sensing
data

Forward
problem

Inverse
problem

Forward modeling: simulation of a database of pairs of reflectance
spectra and parameters

Inverse modeling: numerical/statistical inversion of the models from
remote sensing data to estimate the parameters
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Variables 
of interest

Additional
variables

Observation
configuration

Prior
knowledge

Retrieval
algorithm

Radiative
transfer

Remote sensing
data

Forward
problem

Inverse
problem

The forward (or direct) problem involves radiative transfer models (RTMs)

Solving the inversion problem implies the design of algorithms that,
starting from the radiation acquired by the sensor, can give accurate
estimates of the variables of interest, thus ‘inverting’ the RTM
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The discrete forward model can be expressed as:

y = f (X,θ) + n

y is a set of measurements (e.g. expected radiance)

X is a matrix of state vectors that describe the system (e.g. the
parameters such as temperature or moisture)

θ contains a set of controllable measurement conditions (e.g.
combinations of wavelength, viewing direction, time, Sun position, and
polarization)

n is an additive noise vector

f (·) is a function which relates X with y

f is typically considered to be nonlinear, smooth and continuous

The discrete inverse model is defined as:

X̂ = g(y,ω)

where g(·) is a nonlinear function, parametrized by weights ω that
approximates the measurement conditions, X, using a set of observations as
inputs, y
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Taxonomy of model inversion methods, three main families:

1 The statistical inversion models: parametric and non-parametric.

Parametric models rely on physical knowledge of the problem and build
explicit parametrized expressions that relate a few spectral channels with
the bio-geo-physical parameter(s) of interest.
Non-parametric models are adjusted to predict a variable of interest using a
training dataset of input-output data pairs.

2 Physical inversion models: try to reverse RTMs.
After generating input-output (parameter-radiance) datasets, the problem
reduces to, given new spectra, searching for similar spectra in the dataset
and assigning the most plausible (‘closest’) parameter.

3 Hybrid inversion models try to combine the previous approaches.
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Two main approaches:

1 Parametric regression: assume an explicit model for retrieval

Discrete band approaches (VIs) Quasi-continuous spectral bands
2-band: SR, NDVI, PRI, OSAVI Red-edge position (REP)
3-band: TVI, MCARI, SIPI Integral/Derivative indices
≥ 4− band: TCARI/OSAVI Continuum removal

2 Non-parametric regression: do not assume explicit feature relations

Linear nonparametric models
Stepwise multiple linear regression (SMLR)
Partial least squares regression (PLSR)
Ridge regression (RR)
Least Absolute Shrinkage and Selection Operator (LASSO)

Nonlinear nonparametric models
Decision trees, bagging and random forests
Neural networks
Kernel methods: SVR, RVM, KRR, GPR
Bayesian networks
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Literature review of parametric approaches, VI:

Jordan69,Liang04,Liang08 simple ratios

Rouse74 Normalized difference vegetation index (NDVI)

Gamon92 Photochemical reflectance index (PRI)

Rondeaux96 Optimized soil adjusted vegetation index (OSAVI)

Broge01 Triangular vegetation index (TVI)

Daughtry00 Modified CabAbsorption in Reflectance Index (MCARI)

Haboudane02 Transformed CARI (TCARI)

Penuelas95 Structure Insensitive Pigment Index (SIPI)

Haboudane02 Combination of indices, TCARI/OSAVI

Thenkabail00,LeMaire04,LeMaire08,Mariotto13 Quality assessment

Literature review of parametric approaches, quasi-continuous bands:

Baret92,Broge01,Clevers02 High-order curve fitting of the first derivative in the
red-edge

Miller90 Inverted Gaussian models

Guyot88 Linear interpolation and extrapolation

Dawson98 Lagrangian interpolation

Baranoski05 Rational function

Broge01,Oppelt04,Mutanga05,Malenovsky06,Delegido10 Integral-based indices

Sims02,Penuelas94,Elvidge95,Zarco-Tejada02,LeMaire04 Derivative-based indices

Clark84 Continuum removal for absorption features comparison
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Parametric approaches:

Weaknesses Strengths

Makes only poorly use of the available
information within the spectral
observation; at most a spectral subset
is used. Therefore, they tend to be
more noise-sensitive as compared to
full-spectrum methods

Parametric regression puts boundary
conditions at level of chosen bands,
formulations and regression function.

Statistical function accounts for one
variable at the time.

A limited portability to different
measurement conditions or sensor
characteristics

No uncertainty estimates are provided.
Hence the quality of the output maps
remain unknown.

Simple and comprehensive regression
models; little knowledge of user
required

Fast in processing

Computationally inexpensive
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Literature review of linear nonparametric approaches

Yoder95,Fourty97,Bartholomeus12 Stepwise multiple linear regression (LR)

Liang08 Principal component regression (PCR)

Hansen02,Cho07,Darvishzadeh08,Ye08,Im09 Partial least squares regression (PLSR)

Addink07 ridge regression (RR)

Lazaridis11 Least Absolute Shrinkage and Selection Operator (LASSO)

Literature review of nonlinear nonparametric approaches

Im09,Im12,leMaire11,Viedma12,Hansen02 decision trees

CampsValls14 bagging and random forests

Jin97,Paruelo97,Francl97,Kimes99,Kavzoglu03,Huang04,Jensen12,CampsValls13
artificial neural networks

Arenas12,Arenas13,Izquierdo14 kernel feature extraction (KPLS, KOPLS)

CampsValls06,CampsValls10 relevance vector machines (RVM)

Yang01,CampsValls06 support vector regression (SVR)

Peng11,Wang11,CampsValls12 kernel ridge regression (KRR)

Verrelst11,CampsValls12,Verrelst12,Lazaro13 Gaussian processes (GP) on Sentinel-2
data (KRR, GP)
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Non-parametric approaches:

Weaknesses Strengths

Training can be computational
expensive.

They can create over-complex models
that do not generalize well from the
training data (overfitting).

Therefore, several regressors cannot be
trained with high number of samples.

Expert knowledge required, e.g. for
tuning. However, toolboxes exist that
automate some steps.

Most of them act as a black box.

Some regressors behave rather unstable
when applied to data that deviate from
statistically different from those used
for training.

Can make use of all bands (full spectral
information).

Build advanced, adaptive (nonlinear)
models.

Enables accurate and robust
performances.

Some methods cope well with
redundancy and noisy data.

Once trained, fast processing images.

Some of them (e.g. NN, decision trees)
can be trained with high numbers of
samples (e.g. > 106).

Some methods provide insight in model
development (e.g. GPR: relevant
bands; decision trees: model structure).

Some methods provide uncertainty
intervals (e.g. GPR, KRR).
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How to measure goodness of a model?
Given two variables yi and ŷi , i = 1, . . . ,N

Error (residuals): ei = yi − ŷi

Bias: mean error (ME):

ME =
1

N

∑N
i=1(yi − ŷi )

Accuracy:

RMSE =

√
1

N

∑N
i=1(yi − ŷi )2 MAE =

1

N

∑N
i=1 |yi − ŷi |

Goodness-of-fit: Pearson’s correlation coefficient

Matlab:
>> ME = mean(Labels-PreLabels);

>> RMSE = sqrt(mean((Labels-PreLabels).2));

>> MAE = mean(abs(Labels-PreLabels));

>> r = corrcoef(Labels,PreLabels); R = r(1,2);

>> RESULTS = assessment(y,yhat,’regress’)
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Data: SPARC data set (2003, 2004; Barrax, Spain)
Field data: Chl measured with CCM-200
30 additional bare soil samples
CHRIS mode 1 (62 bands; 34m) nadir spectra

Kernel ridge regression (and GPs) excel in predicting Chla-LAI-fCover
over many parametric indices
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Data: SPARC data set (2003, 2004; Barrax, Spain)
Field data: Chl measured with CCM-200
30 additional bare soil samples
CHRIS mode 1 (62 bands; 34m) nadir spectra

Gaussian Processes also provide confidence intervals for the
predictions (e.g. to identify poorly-sampled areas)
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Motivation:

Statistical approaches may lack transferability, generality, and robustness
to new geographical areas

Physical models can fill in the gap for estimating bio-geo-chemical
structural state variables from spectra

Physically-based inversion:

Rely on well-established physical laws encoded in radiation transfer models
(RTMs), and a set of remote sensing measurements

Physically-sound approach to retrieve biophysical variables over terrestrial
surfaces because it is generally applicable [Dorigo07]

The advantage of physical models is that they can be coupled from lower
to higher levels (e.g. canopy level models build upon leaf models), thereby
providing a physically-based linkage between optical EO data and
biochemical or structural state variables
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RTMs in forward mode create a database (LUT) covering a wide range of
situations and configurations:

Sensitivity studies of canopy parameters relative to diverse observation
specifications

Improved understanding of the Earth Observation (EO) signal as well as to
an optimized instrument design of future EO systems

RTMs in inversion mode enables retrieving particular characteristics from
EO data:

The unique and explicit solution for a model inversion depends on the
number of free model parameters relative to the number of available
independent observations

A prerequisite for a successful inversion is therefore the choice of a
validated and appropriate RTM, which correctly represents the radiative
transfer within the observed target

When a unique solution is not achieved then more a priori information is
required to overcome the ill-posed problem
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Inversion of radiative transfer models

Inverting an RTMs means: given a spectra, find the closest spectra in the
database and return the corresponding parameter

Given a set of n data pairs generated by an RTM, {y,X}ni=1,

min
θ
{‖y − f (X;θ)‖2}

Two main approaches:

Jacquemoud95,Kuusk98,Zarco-Tejada01 Numerical optimization minimizes a
function that calculates the RMSE between the measured and
estimated quantities by successive input parameter iteration

Liang07 Look-up tables (LUT) precompute the model reflectance for a
large range of combinations of parameter values, so the
problem reduces to searching a LUT for the modeled
reflectance that most resembles the measured one
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Role of regularization:

Dorigo2009,Verrelst12c,Laurent2013 At a local scale, use of prior knowledge to
constrain model parameters per land cover class

At a global scale, the MODIS LAI inversion algorithm
constrains the structural and optical parameter space per biome

Richter2009,Combal2002,Koetz2005,Richter2011,Darvishzadeh2011 The use of
multiple best solutions in the inversion (instead of the single
best solution)

Richter2009,Koetz2005,Richter2011 The addition of Gaussian noise to account
for uncertainties attached to measurements and models.

Meroni2004,Fang05,Schlerf2005,Darvishzadeh2011 Improved performance
when only few well-chosen wavelengths are chosen for model
inversion

Atzberger2004,Atzberger2012 Spatial information

Koetz2005,Lauvernet2008 Temporal constraints
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At a global scale, the MODIS LAI inversion algorithm constrains the
structural and optical parameter space per biome:
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Physical approaches:

Weaknesses Strengths

Computational-expensive because
per-pixel based and therefore slow
(however solutions based on a priori
info have been developed)

Quality depends on quality RT models,
prior knowledge and regularization.

Quite complicated approach:
parametrization and optimization
required.

The imposed upper/lower boundaries in
the LUT had as a logical consequence
that estimated parameters could not go
beyond the imposed bounds. This
contradicts somewhat the physical
approach as the prior information has
an overwhelming influence

LUT-based inversion methods are often
strongly affected by noise and
measurement uncertainty

Reputation of physically-based
(however note influence of
regularization factors)

Generally and globally applicable (e.g.
MODIS)

Additional information about
uncertainty of the retrievals (e.g.
residuals).
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Hybrid inversion method:

The approach: combination of extensive simulations using a canopy RTM
model (physical) and a non-parametric statistical inversion model
(statistical)

Advantanges:
Exploit the advantages of physically-based models and the flexibility and
computational efficiency of nonparametric nonlinear regression methods.
Many possible combinations of RTMs and regression models
Very efficient approach

Shortcomings:
How many parameters?
How many radiance-parameters do we need in the database?
How to include regularization with noise-fre data?
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A hybrid approach for LAI estimation [Liang03]

170 / 178



Intro Statistical Physical Hybrid Summary

Automated Radiative Transfer Models Operator (ARTMO)
http://ipl.uv.es/artmo/
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ARTMO can automatize the whole process ...
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ARTMO can automatize the whole process ...
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Biophysical parameter estimation is perharps the most important (and
challenging) problem in remote sensing

Hyperspectral sensors provide an unprecedented piece of information for
accurate estimation

Traditional methods were focused on simplistic approaches using only few
spectral bands

New regression-based approaches alleviate the problems by exploiting the
wealth of spectral information

The common approaches consider:
Empirical models (e.g. Vegetation indices) are easy, fast but too general
Physical radiative transfer models are flexible but slow and require plant
specific information (e.g. geometry, background) which is not always
available
Non-parametric regression may offer a robust alternative that can be easily
implemented in operative processing chains

Problem: Scalability to many data, high dimensionality!

Solution: Hybrid approaches + nonparametric sparse learning regression
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Some relevant books:
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The ISP València Matlab Suite
http://isp.uv.es/soft.htm

HyperLabelMe Coming soon

50 labeled multi/hyper images

An automatic system to
evaluate classification accuracy

SimpleR

10 state-of-the-art
nonparametric regression
algorithms

Trees, boosting, bagging, neural
nets, kernel methods, Gaussian
processes, etc.

SimFEAT

10 state-of-the-art feature
extraction methods
Linear and kernel methods:
(k)PCA, (k)MNF, (k)CCA,
(k)PLS, (k)OPLS, (k)KECA

SimpleClass

10 state-of-the-art supervised
classifiers
Trees, bagging, random forest,
neural nets, SVMs, kernel
machines, GPC, etc.

Simple to use, open source, re-useable, free!
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Automated Radiative Transfer
Models Operator (ARTMO)
http://ipl.uv.es/artmo/
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