Machine Learning in Remote Sensing

Gustau Camps-Valls

Image Processing Laboratory (IPL) – Universitat de València gustau.camps@uv.es — http://isp.uv.es

1 Introduction to hyperspectral image processing

- Introduction to hyperspectral image processing
- The standard processing chain
- Current challenges

② Feature extraction from hyperspectral images

- Physically-based feature extraction
- Spatial feature extraction
- Advances in spatial-spectral feature extraction

③ Supervised hyperspectral image classification

- Introduction to supervised image classification
- Prior knowledge and invariances
- Contextual information
- Multisource image fusion

Hyperspectral unmixing and abundance estimation

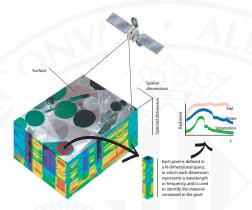
- Definitions: scheme and the mixing model
- Endmember determination, extraction and abundance estimation
- Advances: sparse, contextual and nonlinear models

Retrieval of biophysical parameters

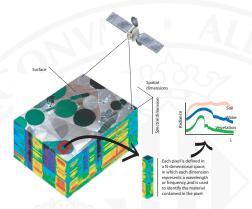
- · Definitions, schemes and approaches
- Physical, statistical and hybrid approaches

O Bibliography and source code

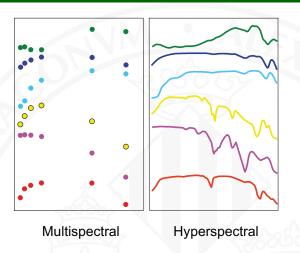
Part 1: Introduction to hyperspectral image processing



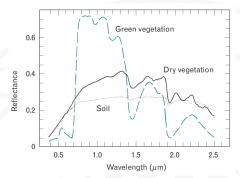
- Lillesand08 "Monitor and model the processes on the Earth surface and their interaction with the atmosphere"
 - Liang04 "Obtain quantitative measurements and estimations of geo-bio-physical variables"
- Manolakis02 "Identify materials on the land cover analyzing the acquired spectral signal by satellite/airborne sensors"



- Materials in a scene reflect, absorb, and emit electromagnetic radiation in a different way depending of their molecular composition and shape.
- Remote sensing exploits this physical fact and deals with the acquisition of information about a scene at a short, medium or long distance.
- Image spectroscopy allows to identify materials in the scene with unprecedented accuracy

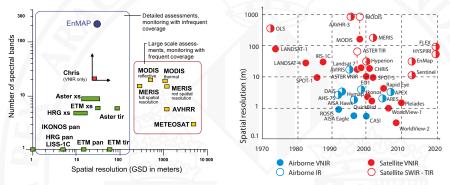


- Hyperspectral signals allow finer material characterization
- Absorption, depth, re-emissions and modulated particular spectral features
- Accurate identification of chemical components and bio-chemical processes

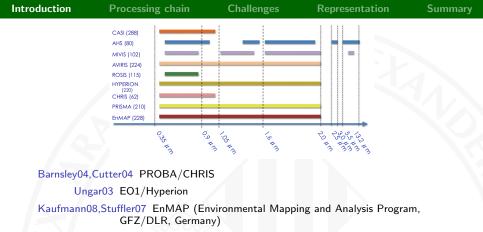


- Different materials produce different electromagnetic radiation spectra
- The spectrum shows absorptions and emissions at different wavelengths \gg e.g. reflectance for soil, dry vegetation, and green vegetation
- The high spectral resolution preserves important aspects of the spectrum (e.g., shape of narrow absorption bands), and makes differentiation of different materials on the ground possible
- The spectral information contained in a hyperspectral image pixel can therefore indicate the various materials present in a scene

Left: Performance comparison of the main air- and space-borne multi- and hyperspectral systems in terms of spectral and spatial resolution. **Right:** Evolution of the spatial-spectral resolution through the years.



Credits: http://www.enmap.de/



Stoll03, Moreno06 FLEX (ESA proposal)

Green08 HyspIRI (NASA GSFC proposal)

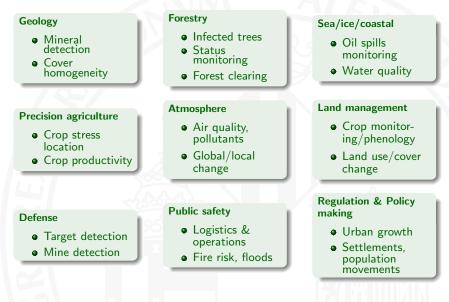
Trishchenko07 MEOS

ZASat ZASat (South African proposal, University of Stellenbosch)

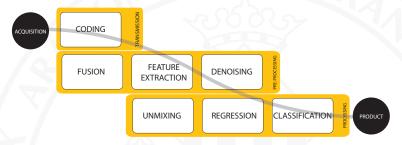
HIS HIS (Chinese Space Agency)

HERO HERO - Hyperspectral Environment and Resource Observer, Canadian Space Agency

Some fields of application...



A standard image processing chain:



- Many steps and by-products from signal/image acquisition to the product
- $\bullet \ {\sf Transmission} \longrightarrow {\sf Preprocessing} \longrightarrow {\sf Processing}$
- A wide diversity of problems and dedicated tools

 Select best features (channels, spatial) that describe the problem (classification, retrieval)

Feature selection, extraction and fusion

Segmentation

Estimation

Coding

Restoration

- Select best features (channels, spatial) that describe the problem (classification, retrieval)
- Extract (lin/nonlin) combinations of spectral channels that best describe the problem

Segmentation

Estimation

Coding

Parsing/retrieval

Segmentation

Spectral unmixing

Estimation

Coding

Parsing/retrieval

- Select best features (channels, spatial) that describe the problem (classification, retrieval)
- Extract (lin/nonlin) combinations of spectral channels that best describe the problem
- Combine panchromatic and optical bands to improve products

Segmentation

Spectral unmixing

Estimation

Coding

Restoration

- Select best features (channels, spatial) that describe the problem (classification, retrieval)
- Extract (lin/nonlin) combinations of spectral channels that best describe the problem
- Combine panchromatic and optical bands to improve products
- Automatically find groups of pixels in the image (for screening, detection)

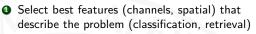
Segmentation

Estimation

Spectral unmixing

Coding

Parsing/retrieval



- Extract (lin/nonlin) combinations of spectral channels that best describe the problem
- Combine panchromatic and optical bands to improve products
- Automatically find groups of pixels in the image (for screening, detection)
- Estimate geo-bio-physical parameters and variables (temperature, LAI, etc) from spectra

Segmentation

Estimation

Codina

Spectral unmixing

- Select best features (channels, spatial) that describe the problem (classification, retrieval)
- Extract (lin/nonlin) combinations of spectral channels that best describe the problem
- Combine panchromatic and optical bands to improve products
- Automatically find groups of pixels in the image (for screening, detection)
- Estimate geo-bio-physical parameters and variables (temperature, LAI, etc) from spectra
- Estimate the spectral components (pure pixels, endmembers) in a 'mixed' pixel

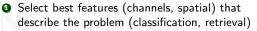
Segmentation

Restoration

Estimation

Spectral unmixing

Coding



- Extract (lin/nonlin) combinations of spectral channels that best describe the problem
- Combine panchromatic and optical bands to improve products
- Automatically find groups of pixels in the image (for screening, detection)
- Estimate geo-bio-physical parameters and variables (temperature, LAI, etc) from spectra
- Estimate the spectral components (pure pixels, endmembers) in a 'mixed' pixel
- Compress images for storage and transmission, while keeping most of the information

Segmentation

Estimation

Restoration

Spectral unmixing

Coding

- Select best features (channels, spatial) that describe the problem (classification, retrieval)
- Extract (lin/nonlin) combinations of spectral channels that best describe the problem
- Combine panchromatic and optical bands to improve products
- Automatically find groups of pixels in the image (for screening, detection)
- Estimate geo-bio-physical parameters and variables (temperature, LAI, etc) from spectra
- Estimate the spectral components (pure pixels, endmembers) in a 'mixed' pixel
- Compress images for storage and transmission, while keeping most of the information
- Remove noise and distortions due to acquisition (sun glint) or transmission (vertical stripes)

Segmentation

Estimation

Spectral unmixing

Coding

Restoration

- Select best features (channels, spatial) that describe the problem (classification, retrieval)
- Extract (lin/nonlin) combinations of spectral channels that best describe the problem
- Combine panchromatic and optical bands to improve products
- Automatically find groups of pixels in the image (for screening, detection)
- Estimate geo-bio-physical parameters and variables (temperature, LAI, etc) from spectra
- Estimate the spectral components (pure pixels, endmembers) in a 'mixed' pixel
- Compress images for storage and transmission, while keeping most of the information
- Remove noise and distortions due to acquisition (sun glint) or transmission (vertical stripes)
- Assign semantic classes to objects (pixels, patches, regions) in the scene

 \bullet High spectral resolution \rightarrow moderate spatial resolutions (mixed pixels, subpixel targets)

- \bullet High spectral resolution \rightarrow moderate spatial resolutions (mixed pixels, subpixel targets)
- High dimensional data: multi-temporal, multi-angular and multi-source fusion

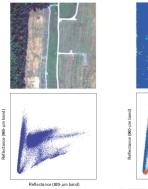
- High spectral resolution \rightarrow moderate spatial resolutions (mixed pixels, subpixel targets)
- High dimensional data: multi-temporal, multi-angular and multi-source fusion
- Non-linear and non-Gaussian feature relations

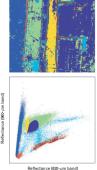
23 / 178

- High spectral resolution \rightarrow moderate spatial resolutions (mixed pixels, subpixel targets)
- High dimensional data: multi-temporal, multi-angular and multi-source fusion
- Non-linear and non-Gaussian feature relations
- Few supervised (labeled) information is available (high cost)

- High spectral resolution \rightarrow moderate spatial resolutions (mixed pixels, subpixel targets)
- High dimensional data: multi-temporal, multi-angular and multi-source fusion
- Non-linear and non-Gaussian feature relations
- Few supervised (labeled) information is available (high cost)
- Tons of data to process in (near) real-time

Representation of images: the feature space

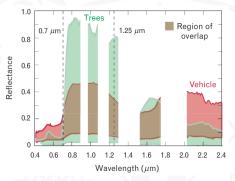




- Pixels (or eventually patches) become points in a geometric feature space
- Axes have physical meaning, e.g. reflectances
- Relations between features reveal non-linear and non-Gaussian structures

Credits: Image from Manolakis02.

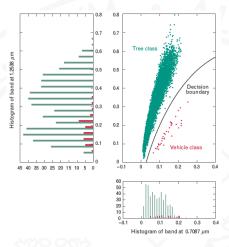
Spectral variability poses problems for discrimination:



• In overlapping spectral regions, discrimination is almost impossible with just a single band

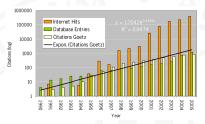
Credits: Image from Manolakis02.

Combination of bands solves the problem:



- $\bullet\,$ Simultaneous exploitation of the spectral bands at $0.7\mu m$ and $1.25\mu m$ makes discrimination possible
- More bands lead to linear separability theoretically

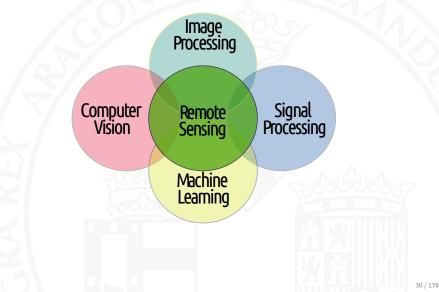
Hyperspectral imaging is an interdisciplinary, ever-growing field of Science:



- Hyperspectral images provide a unique source of information for many real-life applications:
 - Identify materials in the land cover
 - Update land cover and land use maps
 - Detect targets of interest (in both civilian and military applications)
 - Estimate the abundance and mixture of materials per pixel
 - Estimate biophysical parameters
- High dimensionality of data pose many processing problems
 - Curse of dimensionality: Few labeled samples in high dimensional spaces
 - Many high-dim unlabeled pixels: huge computational cost and redundancy issues
 - Ancillary information typically included: how? when? useful?

Credits: Image from Schaepman09 - 'Earth system science related imaging spectroscopy-An assessment'.

We will live at the intersection:



Part 2: Feature extraction from hyperspectral images

Extracting features from remote sensing images is essential to:

- Compress information for storage/transmission
- Reduce (spatial and spectral) redundancy
- Make image processing algorithms more robust (to noise, #labels, dim.)
- Visualize data characteristics
- Understand the underlying physical relations

Extracting features from remote sensing images is essential to:

- Compress information for storage/transmission
- Reduce (spatial and spectral) redundancy
- Make image processing algorithms more robust (to noise, #labels, dim.)
- Visualize data characteristics
- Understand the underlying physical relations

Extracted features can be either:

- Spectral:
 - Physically-based spectral features
 - Statistical multivariate methods: linear and nonlinear
- Spatial/contextual
 - Standard image processing descriptors
 - Advanced computer vision descriptors
- Spatio-spectral: extract features from spectral patches or regions

Motivation:

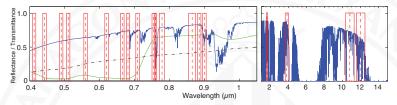
- Measured spectral signal at the sensor depends on the illumination, the atmosphere, and the surface
- Physically-inspired features before applying a machine learning algorithm
- Adapt standard feature extraction methods, such as PCA, to include knowledge about the physical problem

Motivation:

- Measured spectral signal at the sensor depends on the illumination, the atmosphere, and the surface
- Physically-inspired features before applying a machine learning algorithm
- Adapt standard feature extraction methods, such as PCA, to include knowledge about the physical problem

Two case studies:

- **O** Cloud screening with spectral feature extraction from MERIS and AATSR
- Vegetation monitoring by vegetation indices



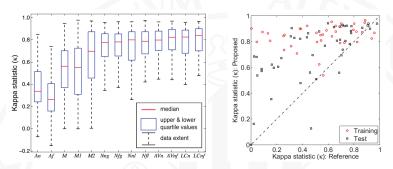
MERIS and AATSR channel locations (red boxes) superimposed to a reflectance spectra of healthy vegetation (green thin solid line), bare soil (black dash-dotted line), and the atmospheric transmittance (blue solid line)

- The spectral bands free from atmospheric absorptions contain information about the surface reflectance
- Other spectral bands are mainly affected by the atmosphere
- Cloud features extracted from MERIS and AATSR products are needed to discriminate clouds from surface

Credits: Figure from Gomez-Chova07.

Sensor	Cloud Feature	Channels Involved	Reference
MERIS	Brightness & Whiteness (VIS)	VIS bands [1-8]	GomezChova07
MERIS	Brightness & Whiteness (NIR)	NIR bands [9 10 12 13 14]	GomezChova07
MERIS	Brightness & Whiteness	VIS&NIR bands (without 11 & 15)	GomezChova07
MERIS	O ₂ absorption	754, 761, 778 nm	GomezChova07
MERIS	WV absorption	885, 900nm	GomezChova07
MERIS	Surface Pressure	761&754nm	Lindstrot09
MERIS	Surface Pressure	761/754nm ratio	MERIS_handbook
MERIS	Bright over Land (sand)	443/754nm ratio	MERIS_handbook
MERIS	Bright over Land (ice)	709/865nm ratio	MERIS_handbook
MERIS	Cirrus over Ocean/Land	761/754nm ratio ; 865nm	MERIShandbook
MERIS	Bright Clouds	450nm	Preusker08
MERIS	Snow Test (reflectance)	865/890 NDI	Preusker08
MERIS	Cloud 412 reflectance	412/443nm ratio	Kokhanovsky08
MERIS	Cloud 412 reflectance	412/443nm difference	Kokhanovsky08
MERIS	Cloud mask 1	412/681nm ratio	Guanter08
MERIS	Cloud mask 2	412/708nm ratio	Guanter08
MERIS	Hue-Saturation-Value transf.	665, 560, 442nm	Gonzalez07
AATSR	Gross Cloud	12µm	AATSR_handbook
AATSR	Thin Cirrus	$11/12\mu$ m difference	AATSR_handbook
AATSR	$11/12\mu$ m Nadir/Forward	11μ m nad/fwd ; $11/12\mu$ m	AATSR_handbook
AATSR	Visible Channel Cloud Test	870,670,550nm NDI	Prata02
AATSR	Snow Test	1.6µm 550nm NDI	Prata02
AATSR	Reflectance Gross Cloud	670nm	Birks07
AATSR	Reflectance Ratio	870/670nm ratio	Birks07
AATSR	Albedo	3.7µm	Birks07
AATSR	Thermal Difference	$11/12\mu$ m difference	Birks07
AATSR	Thermal Gross Cloud	11µm	Birks07
AATSR	11μ m Nadir/Forward	11µm nad/fwd	Muller08
AATSR	865 Nadir/Forward	865 nad/fwd	Muller08

Credits: Table from Gomez-Chova07.



- Combination of MERIS and AATSR features improves cloud detection
- Cloud detection over 84 MERIS/AATSR images improves the 'BEAM Cloud Probability Processor'

Credits: Figures taken from Gomez-Chova10.

Example 2: Vegetation monitoring with spectral indices

- The estimation of land/vegetation parameters from remote sensing images helps to determine their status and processes therein
- Standard parameters: Leaf chlorophyll content (*Chl*), leaf area index (LAI), and fractional vegetation cover (FVC)
- Simple relations to predict bio-physical parameters from VIs:

$$y = \sum_{i=1}^{n} a_i V I^i$$

$$y = a + b V I^c$$
(1)

$$y = a \ln(b - V I) + c$$

where VI is a combination (typically ratios) of reflectance values in n specific channels

• VIs can be either computed using digital numbers, TOA radiance/reflectance, or surface radiance/reflectance

The Normalized Difference Vegetation Index (NDVI) is a widely used index:

$$\mathsf{NDVI} = \frac{\mathsf{NIR} - \mathsf{R}}{\mathsf{NIR} + \mathsf{R}}$$

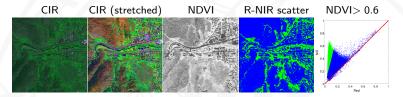


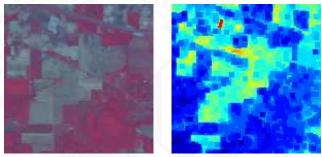
Figure : Landsat image acquired over a residential area containing different land classes (asphalt, forest, buildings, grass, water, etc.). Left to right: standard color-infrared (CIR) composite, stretched CIR and NDVI image, thresholded NDVI image, and the scatter plot of all image pixels in Red versus NIR space.

Method	Formulation	ρ
GI	R_{672}/R_{550}	0.52 (0.09)
GVI	$(R_{682}-R_{553})/(R_{682}+R_{553})$	0.66 (0.07)
Macc	$(R_{780}-R_{710})/(R_{780}+R_{680})$	0.20 (0.29)
MCARI	$[(R_{700}-R_{670})-0.2(R_{700}-R_{550})]/(R_{700}/R_{670})$	0.35 (0.14)
MCARI2	$1.2[2.5(R_{800}-R_{670})-1.3(R_{800}-R_{550})]$	0.71 (0.12)
mNDVI	$(R_{800}-R_{680})/(R_{800}+R_{680}-2R_{445})$	0.77 (0.12)
mNDVI705	$(R_{750}-R_{705})/(R_{750}+R_{705}-2R_{445})$	0.80 (0.07)
mSR ₇₀₅	$(R_{750}-R_{445})/(R_{705}+R_{445})$	0.72 (0.07)
MTCI	$(R_{754}-R_{709})/(R_{709}+R_{681})$	0.19 (0.26)
mTVI	$1.2[1.2(R_{800}-R_{550})-2.5(R_{670}-R_{550})])$	0.73 (0.07)
NDVI	$(R_{800}-R_{670})/(R_{800}+R_{670})$	0.77 (0.08)
NDVI2	$(R_{750}-R_{705})/(R_{750}+R_{705})$	0.81 (0.06)
NPCI	$(R_{680}-R_{430})/(R_{680}+R_{430})$	0.72 (0.08)
NPQI	$(R_{415}-R_{435})/(R_{415}+R_{435})$	0.61 (0.15)
OSAVI	$1.16(R_{800}-R_{670})/(R_{800}+R_{670}+0.16)$	0.79 (0.09)
PRI	$(R_{531}-R_{570})/(R_{531}+R_{570})$	0.77 (0.07)
PRI2	$(R_{570}-R_{539})/(R_{570}+R_{539})$	0.76 (0.07)
PSRI	$(R_{680} - R_{500})/R_{750}$	0.79 (0.08)
RDVI	$(R_{800} - R_{670}) / \sqrt{(R_{800} + R_{670})}$	0.76 (0.08)
SIPI	$(R_{800}-R_{445})/(R_{800}-R_{680})$	0.78 (0.08)
SPVI	$0.4[3.7(R_{800}-R_{670})-1.2(R_{530}-R_{670})]$	0.70 (0.08)
SR	R_{800}/R_{680}	0.63 (0.12)
SR1	R_{750}/R_{700}	0.74 (0.07)
SR2	R_{752}/R_{690}	0.68 (0.09)
SR3	R ₇₅₀ /R ₅₅₀	0.75 (0.07)
SR4	R_{672}/R_{550}	0.76 (0.10)
SRPI	R_{430}/R_{680}	0.76 (0.09)
TCARI	$3[R_{700}-R_{670})-0.2(R_{700}-R_{550})(R_{700}/R_{670})]$	0.53 (0.13)
TVI	$0.5[120R_{750}-R_{550})-200(R_{670}-R_{550})]$	0.70 (0.10)
VOG	R ₇₄₀ /(R ₇₂₀	0.76 (0.06)
VOG2	$(R_{734}-R_{747})/(R_{715}+R_{726})$	0.72 (0.09)
NAOC	Area in [643, 795]	0.79 (0.09)

Credits: Table from Verrelst11.

Erosion: "Replace pixel with the minimum surrounding pixel over SE."
>> se = strel('disk',3); 0 = imerode(I,se);

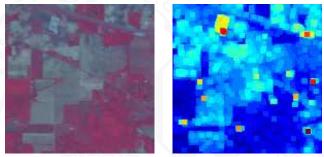
Erosion, disk 3x3



- Darker features than the surroundings are enlarged
- Brighter features than the surroundings shrink

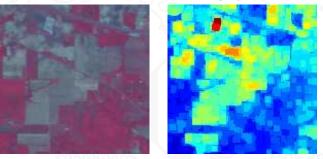
Dilation: "Replace pixel with the maximum surrounding pixel over SE."
>> se = strel('disk',3); 0 = imdilate(I,se);

Dilation, disk 3x3



- Brighter features than the surroundings are enlarged
- Darker features than the surroundings shrink

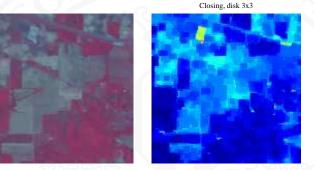
Opening: "Erosion followed by dilation"
>> se = strel('disk',3); 0 = imopen(I,se);



Opening, disk 3x3

- Brighter features than the surroundings and smaller than the SE disappear
- Other features (dark, or bright and large) remain unchanged

Closing: "Dilation followed by erosion."
>> se = strel('disk',3); C = imclose(I,se);



• Darker features than the surroundings and smaller than the SE disappear

• Other features (bright, or dark and large) remain unchanged

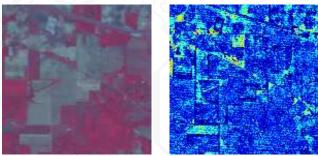
Top hat: "Open and then subtract the result from the original image"
>> se = strel('diamond',5); T = imtophat(I,se);

- Emphasizes distinct (sharp peaks) structures, extracts small elements and details from given images
 - Useful to correct for uneven illumination (improve contrast)

Top hat, diamond 3x3

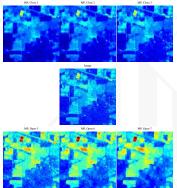
Bottom hat: "Closing and then subtracts the result from the original image"
>> se = strel('diamond',5); B = imbothat(I,se);

Bottom hat, disk 3x3



- Emphasizes distinct (sharp valleys) structures
- Useful to correct for uneven illumination (improve contrast)

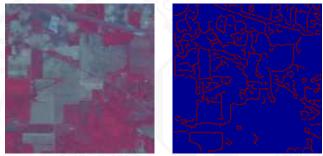
Morphological profile: "Openings and closings with increasing SE"
>> se = strel('diamond',5); repeat opening-closing operations;



- Pixels turn into a sequential analysis of fine-to-coarse relations
- Useful as a feature vector for processing (e.g. classification)

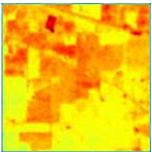
Edges: "Detecting discontinuities in images"
>> EDGES1 = edge(I,'canny'); EDGES2 = edge(I,'prewitt');

Canny edges



- · Useful feature to detect boundaries in urban monitoring
- Useful feature for object delineation

Mean filter: "Average intensity values around every pixel"
>> H = ones(3); S = imfilter(I,H);

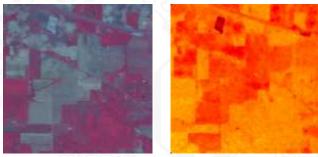


- Useful for noise removal and smoothing
- Simple yet efficient to account for spatial pixel relations

Mean filter, 5x5 window

Median filter: "Replace a pixel with the median value of the neighborhood"
>> S = medfilt2(I);

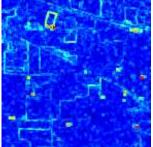
Median filter, 3x3 window



- Useful for impulsive noise removal and invariance encoding
- Simple yet efficient to account for spatial pixel relations

Standard deviation: "Replace a pixel with the local standard deviation value
of the neighborhood"
>> S = stdfilt(I);

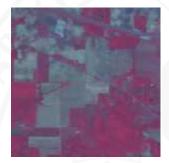
Local standard deviation, 3x3 window



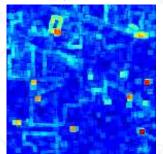
- Useful to detect borders and edges
- Captures the spatial variability of the intensity image

Range filter: "Replace a pixel with the range (max - min) value of the neighborhood"

```
>> R = rangefilt(I,ones(5));
```

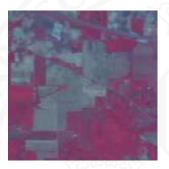


Local range filter, 5x5 window

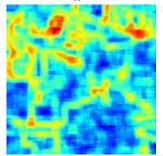


- Useful for edge detection
- Useful for range filtering

Local entropy: "Replace a pixel with the entropy value of the neighborhood"
>> H = entropyfilt(I/max(I(:)));



Local entropy, 9x9 window

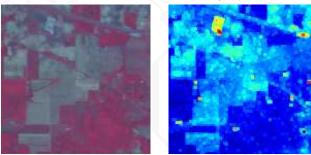


- Useful for edge detection
- Useful for saliency and detection of anomalies

Max pooling filtering: "Replace a pixel with the maximum value of the neighborhood"

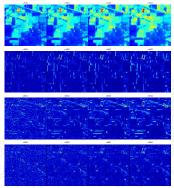
>> maxpool = ordfilt2(I,9,true(3));

Max pooling, 3x3 window



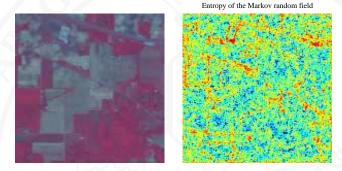
- Efficient to encode invariance to rotation
- Useful in object detection

Haar wavelet decomposition: "performs a multilevel 2-D nondecimated wavelet decomposition with n scales and 3 orientations" >> n = 4; w = 'db1'; >> WT = ndwt2(I,n,w);



- Multiscale analysis of spatial and frequency pixel relations
- Stacking features is robust to noise and powerful for discrimination

Markov random fields: "Models a pixel with a Markov chain of the surrounding pixels, and computes a statistic on the model weights" >> fun = @(x) entropy(lsfit(x)); >> M = nlfilter(I,[3 3],@fun);



- A simple linear predictive model is useful to capture textures
- Computationally demanding and several free parameters

- Dimensionality reduction is essential before classification or regression
- High number of correlated features leads to collinearity, overfitting, and Hughes phenomenon
- Most of the spectral feature extractors are based on multivariate analysis: "project data onto a subspace that maximize explained variance, minimize correlation, minimize error, etc."
- Linear methods are simple and intuitive, yet often not appropriate (nonlinearity, non-Gaussianity)
- Nonlinear methods give improved expressive power

Principal component analysis (PCA)

• "Find projections maximizing the variance of the data:"

 $\begin{array}{ll} \mathsf{PCA:} & \mathsf{maximize:} & \mathsf{Tr}\{(\boldsymbol{X}\boldsymbol{U})^{\top}(\boldsymbol{X}\boldsymbol{U})\} = \mathsf{Tr}\{\boldsymbol{U}^{\top}\boldsymbol{\mathsf{C}}_{xx}\boldsymbol{\mathsf{U}}\}\\ & \mathsf{subject to:} & \boldsymbol{U}^{\top}\boldsymbol{\mathsf{U}} = \boldsymbol{\mathsf{I}} \end{array}$

Principal component analysis (PCA)

• "Find projections maximizing the variance of the data:"

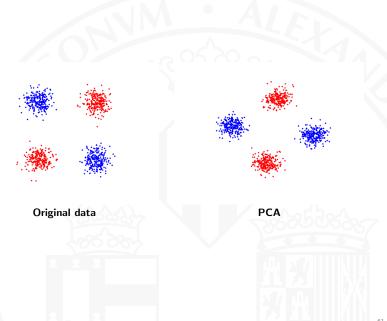
PCA: maximize: $Tr\{(XU)^{\top}(XU)\} = Tr\{U^{\top}C_{xx}U\}$ subject to: $U^{\top}U = I$

• The Matlab PCA code:

>> C = cov(X);
>> [U L] = eigs(C,d);
>> Xtest_projected = Xtest*U;
>> Xtest_projected = Xtest*U(:,1:np);

Pros & cons:

- Simplicity
- / Easy to understand
- $\sqrt{}$ Leads to convex optimization problems
- \times Unsuitable for non-linear problems
- \times More dimensions than points?



Orthonormalized PLS (OPLS)

• "OPLS chooses the projection **U** that minimizes the MSE error using a linear regression:"

OPLS: find: $\mathbf{U} = \arg \min\{\|\mathbf{Y} - (\mathbf{XU})\mathbf{W}\|_{F}^{2}\}\$ where: $\mathbf{W} = (\mathbf{XU})^{\dagger}\mathbf{Y} = ((\mathbf{XU})^{\top}\mathbf{XU})^{-1}\mathbf{XUY}$

Orthonormalized PLS (OPLS)

 "OPLS chooses the projection U that minimizes the MSE error using a linear regression:"

> OPLS: find: $\mathbf{U} = \arg \min\{\|\mathbf{Y} - (\mathbf{XU})\mathbf{W}\|_F^2\}$ where: $\mathbf{W} = (\mathbf{XU})^{\dagger}\mathbf{Y} = ((\mathbf{XU})^{\top}\mathbf{XU})^{-1}\mathbf{XUY}$

"... which can be rewritten as" [Worsley98]

OPLS:	maximize:	$Tr{U^TX^TYY^TXU}$
	subject to:	$(\mathbf{X}\mathbf{U})^{\top}(\mathbf{X}\mathbf{U}) = \mathbf{I}$

Orthonormalized PLS (OPLS)

 "OPLS chooses the projection U that minimizes the MSE error using a linear regression:"

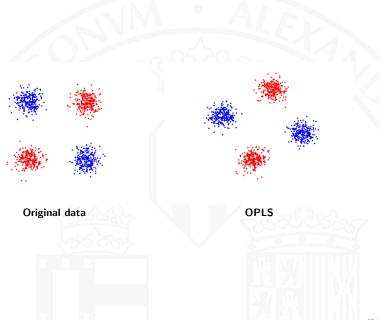
> OPLS: find: $\mathbf{U} = \arg \min\{\|\mathbf{Y} - (\mathbf{XU})\mathbf{W}\|_{F}^{2}\}\$ where: $\mathbf{W} = (\mathbf{XU})^{\dagger}\mathbf{Y} = ((\mathbf{XU})^{\top}\mathbf{XU})^{-1}\mathbf{XUY}$

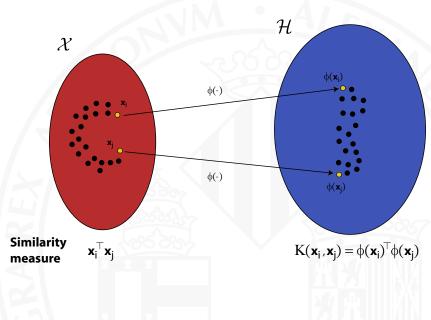
"... which can be rewritten as" [Worsley98]

OPLS:	maximize:	$Tr{U^TX^TYY^TXU}$
	subject to:	$(\mathbf{X}\mathbf{U})^{\top}(\mathbf{X}\mathbf{U}) = \mathbf{I}$

• The Matlab OPLS code

```
>> [U,D] = eig((X'*Y)*(Y'*X),X'*X);
>> [U,D] = eig(inv(X'*X)*(X'*Y)*(Y'*X));
>> [U,D] = eigs((X'*Y)*(Y'*X),X'*X,d);
>> Xtest_projected = Xtest*U;
>> Xtest_projected = Xtest*U(:,1:np);
```



 $\textbf{0} \text{ Map the points in } \mathcal{X} \text{ to a higher dimensional space } \mathcal{H}:$

 $\textbf{X} \rightarrow \textbf{\Phi}$

② Express model parameters in \mathcal{H} as a linear combination of mapped data

 $\mathbf{w} = \mathbf{\Phi}^\top \boldsymbol{\alpha}$

Seplace the dot (scalar) products by a kernel function:

 $\mathsf{K} = \mathbf{\Phi} \mathbf{\Phi}^\top$

Out-of-sample predictions:

$$\mathcal{P}(\mathbf{X}_{test}) = \mathbf{\Phi}_{test}\mathbf{w} = \mathbf{\Phi}_{test}\mathbf{\Phi}^{\top}\boldsymbol{\alpha} = \mathbf{K}(\mathbf{X}_{test}, \mathbf{X})\boldsymbol{\alpha}$$

Valid kernels must be symmetric and positive definite similarity measures

- Linear:
- Polynomial:
- Gaussian Function (RBF):
- Hyperbolic Tangent:
- Build new kernels...

 $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^\top \mathbf{x}_j$

$$K(\mathbf{x}_i,\mathbf{x}_j) = (\mathbf{x}_i^{ op}\mathbf{x}_j + 1)^d$$

$$K(\mathbf{x}_i,\mathbf{x}_j) = \exp(-\|\mathbf{x}_i - \mathbf{x}_j\|^2/(2\sigma^2))$$

$$K(\mathbf{x}_i, \mathbf{x}_j) = \tanh(a(\mathbf{x}_i^{\top}\mathbf{x}_j) + b)$$

$$\begin{split} & \mathcal{K}(\mathbf{x}_i, \mathbf{x}_j) = \mathcal{K}_1(\mathbf{x}_i, \mathbf{x}_j) + \mathcal{K}_2(\mathbf{x}_i, \mathbf{x}_j) \\ & \mathcal{K}(\mathbf{x}_i, \mathbf{x}_j) = \mathcal{K}_1(\mathbf{x}_i, \mathbf{x}_j) \cdot \mathcal{K}_2(\mathbf{x}_i, \mathbf{x}_j) \\ & \mathcal{K}(\mathbf{x}_i, \mathbf{x}_j) = \eta \mathcal{K}_1(\mathbf{x}_i, \mathbf{x}_j), \quad \eta > 0 \end{split}$$

Kernel principal component analysis (KPCA)

• "Find projections maximizing the variance of the mapped data"

 $\begin{array}{ll} \mathsf{KPCA:} & \mathsf{maximize:} & \mathsf{Tr}\{(\Phi U)^{\top}(\Phi U)\} = \mathsf{Tr}\{U^{\top}\Phi^{\top}\Phi U\} \\ & \mathsf{subject to:} & U^{\top}U = I \end{array}$

• Representer's theorem: $\mathbf{U} = \mathbf{\Phi}^{\top} \mathbf{A}, \mathbf{A} = [\alpha_1, \dots, \alpha_n]^{\top}$:

KPCA (2): maximize: $Tr{A^{T}KKA}$ subject to: $A^{T}KA = I$

- Including Lagrange multipliers Λ : $KA = \Lambda A$
- Project new data: $\mathcal{P}(\mathbf{X}_*) = \mathbf{\Phi}_* \mathbf{U} = \mathbf{\Phi}_* \mathbf{\Phi}^\top \mathbf{A} = \mathbf{K}(\mathbf{X}_*, \mathbf{X}) \mathbf{A}$

Kernel principal component analysis (KPCA)

• "Find projections maximizing the variance of the mapped data"

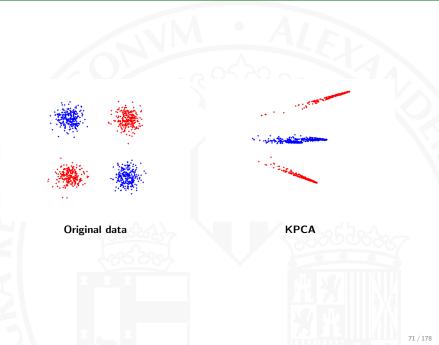
 $\begin{array}{ll} \mathsf{KPCA:} & \mathsf{maximize:} & \mathsf{Tr}\{(\Phi U)^{\top}(\Phi U)\} = \mathsf{Tr}\{U^{\top}\Phi^{\top}\Phi U\} \\ & \mathsf{subject to:} & U^{\top}U = I \end{array}$

• Representer's theorem: $\mathbf{U} = \mathbf{\Phi}^{\top} \mathbf{A}, \ \mathbf{A} = [\alpha_1, \dots, \alpha_n]^{\top}$:

KPCA (2): maximize: $Tr{A^{T}KKA}$ subject to: $A^{T}KA = I$

- Including Lagrange multipliers Λ : $KA = \Lambda A$
- Project new data: $\mathcal{P}(\mathbf{X}_*) = \mathbf{\Phi}_* \mathbf{U} = \mathbf{\Phi}_* \mathbf{\Phi}^\top \mathbf{A} = \mathbf{K}(\mathbf{X}_*, \mathbf{X}) \mathbf{A}$
- The Matlab KPCA code

```
>> K = kernelmatrix('rbf',X,X,sigma);
>> K = kernelcentering(K);
>> [A L] = eigs(K,n);
>> Ktest = kernelmatrix('rbf',Xtest,X,sigma);
>> Xtest_projected = Ktest*A;
>> Xtest_projected = Ktest*A(:,1:np);
```

Kernel Orthonormalized Partial Least Squares (KOPLS)

• "Choose the projection that minimizes the MSE:" [Worsley98]

KOPLS:maximize: $Tr{(\Phi U)^{\top} YY^{\top} \Phi U}$ subject to: $(\Phi U)^{\top} \Phi U = I$

- Representer's theorem: $\mathbf{U} = \mathbf{\Phi}^{\top} \mathbf{A}, \ \mathbf{A} = [\alpha_1, \dots, \alpha_n]^{\top}$:
- \bullet Including Lagrange multipliers $\Lambda,$ this problem is equivalent to

KOPLS: maximize: $Tr{A^{T}K_{x}K_{y}K_{x}A}$ subject to: $A^{T}K_{x}K_{x}A = I$

- This is a generalized eigenproblem: $\mathbf{K}_{x}\mathbf{K}_{y}\mathbf{K}_{x}\mathbf{A} = \mathbf{\Lambda}\mathbf{K}_{x}\mathbf{K}_{x}\mathbf{A}$
- Project new data: $\mathcal{P}(\mathbf{X}_*) = \mathbf{\Phi}_* \mathbf{U} = \mathbf{\Phi}_* \mathbf{\Phi}^\top \mathbf{A} = \mathbf{K}(\mathbf{X}_*, \mathbf{X}) \mathbf{A}$

Kernel Orthonormalized Partial Least Squares (KOPLS)

• "Choose the projection that minimizes the MSE:" [Worsley98]

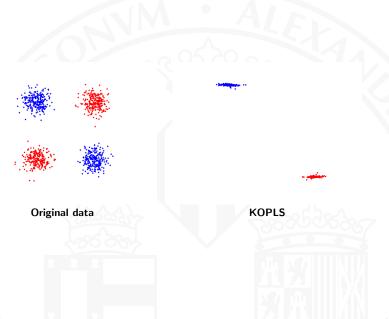
KOPLS: maximize: $Tr{(\Phi U)^{\top} YY^{\top} \Phi U}$ subject to: $(\Phi U)^{\top} \Phi U = I$

- Representer's theorem: $\mathbf{U} = \mathbf{\Phi}^{\top} \mathbf{A}, \ \mathbf{A} = [\alpha_1, \dots, \alpha_n]^{\top}$:
- \bullet Including Lagrange multipliers $\Lambda,$ this problem is equivalent to

KOPLS: maximize: $Tr{A^{T}K_{x}K_{y}K_{x}A}$ subject to: $A^{T}K_{x}K_{x}A = I$

- This is a generalized eigenproblem: $K_x K_y K_x A = \Lambda K_x K_x A$
- Project new data: $\mathcal{P}(X_*) = \Phi_* U = \Phi_* \Phi^\top A = K(X_*, X) A$
- The Matlab KOPLS code

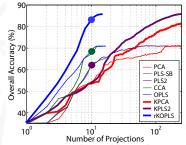
- >> Kx = kernelcentering(K);
- >> Ky = Y*Y';
- >> Ky = kernelcentering(Ky);
- >> [A, L] = eigs(Kx*Ky*Kx,Kx*Kx,n);
- >> Xtest_projected = K(Xtest,X)*A;
- >> Xtest_projected = K(Xtest,X)*A(:,1:np);

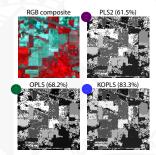


Data:

- AVIRIS image taken over NW Indiana's Indian Pine test site in June 1992
- $\bullet~145\times145$ image size, 220 features (bands), 16 land cover classes
- 80% for training and 20% for testing
- Classifier: linear classifier on top of different number of features

Results:





- · Supervised feature extraction often better than unsupervised
- Higher accuracies lead to smoother maps
- kOPLS excels in performance, needs few components
- kOPLS reduce false alarm rates in large homogeneous vegetation areas

• Extracting features from remote sensing images is essential to:

- Compress information for storage/transmission
- Reduce (spatial and spectral) redundancy
- Visualize data characteristics
- Spectral features rely either on physical prior knowledge or statistical techniques that optimize a sensible criterion
- Spatial features rely on image processing operations builing on the classical smoothness assumption in the image space
- Linearity and Gaussianity are strong assumptions in general
- Nonlinear methods using kernels can be convenient due to high robustness to low-sized datasets and high input space dimensionality

Hyperspectral image classification is a challenging problem!

• Philosophical problems: infinite diversity of the Earth covers

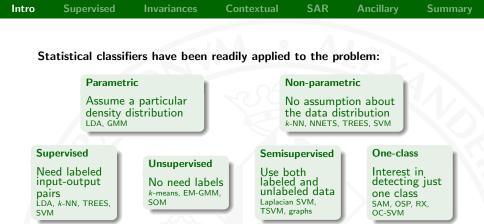
- What is a class? How many classes in the scene?
- What is a forest? How many forest classes are there?

Methodological problems:

- High dimensionality of pixels and scarcity of labels
- Hughes phenomenon, overfitting and generalization capabilities

• Practical and operational problems:

- High cost for gathering labeled data (economic, time, resources)
- Acquisition process and distortions in the images imply strong nonlinearities
- Atmospheric and illumination effects may ruin the validation data
- Heavy image preprocessing: geometric and atmospheric corrections
- Need expert knowledge in pre- and postprocessing



- Not too much success in parametric classifiers, as some assumptions break
- Currently, nonparametric classifiers and committees of experts excel!
- k-NN: good compromise between accuracy and computational cost
- Support vector machines (SVM) typically outperform the rest

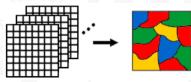
Ancillary

Classifiers:

- Linear discriminant analysis (linear, quadratic, Mahalanobis)
- k-Nearest neighbors (KNN)
- Neural networks (NNETS)
- Support Vector Machines (SVM)

Analysis:

- Accuracy of classifiers (OA, Kappa, Confusion matrix)
- Robustness to dimensionality (apply before PCA?)
- Robustness to number of labeled samples
- Computational cost



Linear discriminant analysis (LDA): "Fits a Gaussian to each class data"

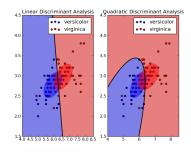
• Linear discriminant analysis ('linear'): Fit a multivariate Gaussian to each group/class through a joint covariance matrix

>> yp=classify(Xtest,Xtrain,Ytrain,'linear');

• Linear discriminant analysis ('quadratic'): Fit a multivariate Gaussian to each group/class through a class-dependent covariance matrix

>> yp=classify(Xtest,Xtrain,Ytrain,'quadratic');

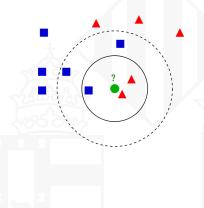
 Linear discriminant analysis ('mahalanobis'): Fit a multivariate Gaussian to each group/class through a class-dependent Mahalanobis distance
 >> yp=classify(Xtest,Xtrain,Ytrain,'mahalanobis');



Ancillary

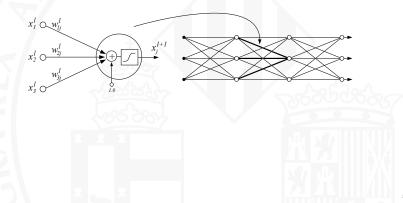
k nearest neightbor (k-NN): "is a non-parametric memory-based classifier that assigns the test label from the closest training point(s)"

- We can play around with the notion of distance (e.g. Euclidean, SAM, etc.)
- k-NN is a rather slow method with many samples and high k
- k = 1 use to work in real applications!
 >> yp = knnclassify(Xtest,Xtrain,Ytrain,'euclidean');



Neural networks (NNETS): "adjust a fully-connected nonlinear hierarchical structure made of simple neurons (point-wise nonlinearity) by minimizing the MSE in the output layer"

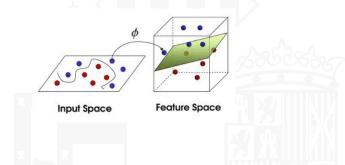
- Binary problems: binary coding of the output $(y \in \{0,1\})$.
- Multiclassification: as many output neurons as classes



Ancillary

Support Vector Machines (SVM): "non-parametric kernel method that fits an optimal linear hyperplane separating the classes in a higher dimensional representation (feature) space"

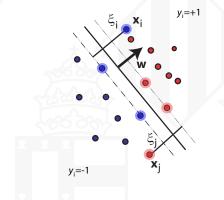
- SVMs optimize two parameters: C to adjust the level of regularization (prevent overfitting) and the σ parameter of the RBF kernel (mapping space dimensionality)
- SVMs are fast to train and apply in moderate size problems
- SVMs are slow with many labeled examples
- SVMs generally outperform the rest in hyperspectral image classification
 >> ypred = svm_classify(Xtest,X,Y);



• The solution of the SVM:

$$\hat{y}_j = f(\mathbf{x}_j) = sign(\mathbf{w}^{\top} \phi(\mathbf{x}_j) + b) = sign\left(\sum_{i=1}^n \alpha_i y_i K(\mathbf{x}_j, \mathbf{x}_i) + b\right)$$

- The solution is sparse: only few examples x_i with $\alpha_i \neq 0$ are important
- Support vectors: those that define the margin <u>and</u> are misclassified examples



Valid kernels must be symmetric and positive definite similarity measures

- Linear:
- Polynomial:
- Gaussian Function (RBF):
- Hyperbolic Tangent:
- Build new kernels...

 $K(\mathbf{x}_i,\mathbf{x}_j) = \mathbf{x}_i^{\top}\mathbf{x}_j$

$$K(\mathbf{x}_i,\mathbf{x}_j) = (\mathbf{x}_i^{\top}\mathbf{x}_j + 1)^d$$

$$K(\mathbf{x}_i,\mathbf{x}_j) = \exp(-\|\mathbf{x}_i - \mathbf{x}_j\|^2/(2\sigma^2))$$

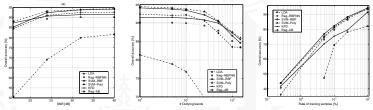
$$K(\mathbf{x}_i, \mathbf{x}_j) = \tanh(a(\mathbf{x}_i^{\top}\mathbf{x}_j) + b)$$

$$\begin{split} & \mathcal{K}(\mathbf{x}_i, \mathbf{x}_j) = \mathcal{K}_1(\mathbf{x}_i, \mathbf{x}_j) + \mathcal{K}_2(\mathbf{x}_i, \mathbf{x}_j) \\ & \mathcal{K}(\mathbf{x}_i, \mathbf{x}_j) = \mathcal{K}_1(\mathbf{x}_i, \mathbf{x}_j) \cdot \mathcal{K}_2(\mathbf{x}_i, \mathbf{x}_j) \\ & \mathcal{K}(\mathbf{x}_i, \mathbf{x}_j) = \eta \mathcal{K}_1(\mathbf{x}_i, \mathbf{x}_j), \quad \eta > 0 \end{split}$$

Example 1: Pixel-wise hyperspectral image classification

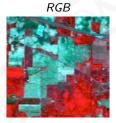
- Standard image: 9 crop classes, Indiana (USA), 1999.
- AVIRIS sensor: 220 bands, 145×145 pixels.
- Only spectral information is considered at this point.

Accuracy and robustness



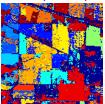
- Non-linear SVM (RBF kernel) yields the best results when compared to LDA and RBF neural nets.
- SVMs show an important gain when working with low number of samples and high dimension, high levels of input noise, and moderate computational cost

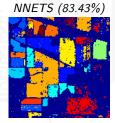
Visual inspection



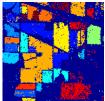
Ground truth

LDA (59.72%)





SVM (88.27%)



Ancillary

Example 2: Spatial-spectral multispectral image classification

- Multispectral image: 9 crop classes, Zürich, 2002.
- Quickbird sensor: 4 bands + 22 spatial features (top/bottom hat).
- Both spatial and spectral information is considered.

Accuracy and robustness without contextual information:

Training		OA [%]					Карра				
pixels		LDA	Trees	<i>k</i> -NN	SVM	MLP	LDA	Trees	<i>k</i> -NN	SVM	MLP
115	μ	60.43	68.62	68.43	74.99	72.94	<u>0.53</u>	<u>0.61</u>	<u>0.61</u>	0.69	0.67
	σ	(5.13)	(3.85)	(1.63)	(2.25)	(1.55)	(0.06)	(0.05)	(0.02)	(0.03)	(0.02)
255	μ	60.19	71.25	73.65	77.31	76.32	0.53	0.64	0.67	0.72	0.71
255	σ	(3.25)	(1.79)	(3.79)	(1.23)	(1.20)	(0.03)	(0.02)	(0.05)	(0.02)	(0.02)
1155	$ \mu $	62.82	76.78	80.92	79.49	79.41	0.56	0.71	0.76	0.74	0.74
	σ	(2.08)	(0.90)	(0.47)	(0.73)	(0.38)	(0.02)	(0.01)	(0.01)	(0.01)	(0.01)
2568	μ	62.68	78.59	81.38	80.42	79.42	0.56	0.74	0.77	0.76	0.74
	σ	(1.94)	(0.32)	(0.24)	(0.34)	(1.09)	(0.02)	(0.01)	(0.01)	(0.01)	(0.01)

- Nonparametric methods (SVMs, MLP) excel
- Lazy learner k-NN shows good performance with enough samples
- Poor performance of linear parametric classifiers as the LDA

Ancillary

Example 2: Spatial-spectral multispectral image classification

- Multispectral image: 9 crop classes, Zürich, 2002.
- Quickbird sensor: 4 bands + 22 spatial features (top/bottom hat).
- Both spatial and spectral information is considered.

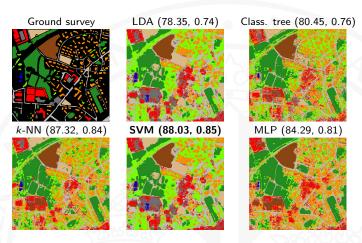
Accuracy and robustness with contextual information:

Training		OA [%]					Карра				
pixels		LDA	Trees	k-NN	SVM	MLP	LDA	Trees	<i>k</i> -NN	SVM	MLP
115	μ	72.93	71.00	75.69	83.37	77.37	0.67	0.65	0.70	0.80	0.72
	σ	(2.85)	(2.97)	(1.28)	(2.40)	(2.48)	(0.03)	(0.03)	(0.02)	(0.03)	(0.03)
255	μ	77.23	73.47	80.53	85.91	80.61	0.72	0.68	0.76	0.83	0.76
	σ	(1.41)	(1.64)	(1.34)	(1.94)	(0.99)	(0.02)	(0.02)	(0.02)	(0.02)	(0.01)
1155	μ	78.35	80.45	87.32	88.03	84.29	0.74	0.76	0.84	0.85	0.81
	σ	(0.69)	(0.73)	(0.63)	(1.68)	(1.77)	(0.01)	(0.01)	(0.01)	(0.02)	(0.02)
2568	μ	78.61	81.59	87.26	87.17	85.10	0.74	0.77	0.84	0.84	<u>0.82</u>
	σ	(0.57)	(0.89)	(0.61)	(0.85)	(1.05)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)

- \bullet Contextual information is beneficial for all models, +5% and 10%
- Contextual information improves SVM and NN much more
- Without spatial features, k-NN is the best option!

Intro

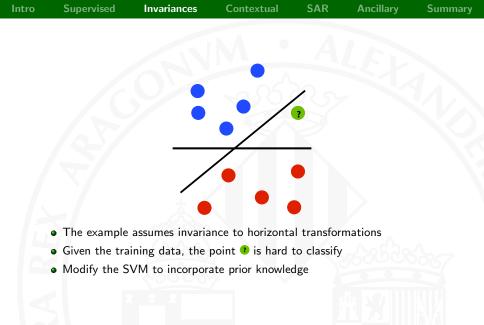
Ancillary

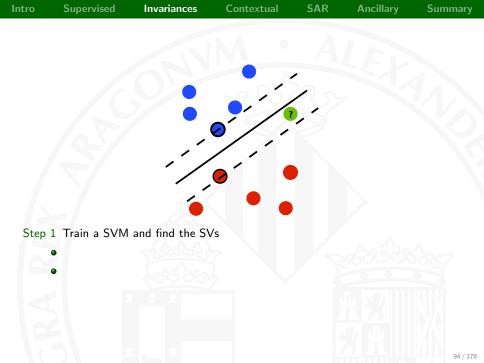


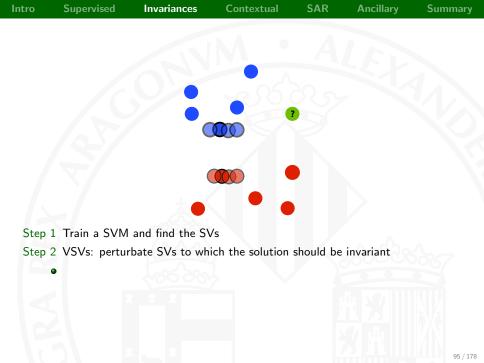
- SVM and k-NN return detect all major structures of the image
- McNemar's test confirmed visual estimation of the quality
- SVM map is significantly better than the others, followed by the *k*-NN and NN maps

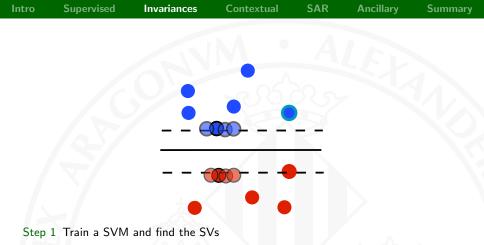
Hyperspectral image classification needs strong regularization:

- SVM imposes regularization naturally by maximum margin
- Advanced classification focuses on other forms of regularization:
 - Reduce dimensionality via feature selection and extraction
 - Include information contained in unlabeled samples
 - Include synthetically generated data encodes invariance properties
 - Impose spatial homogeneity of images: include spatial information
 - Include multisource data
 - Include ancillary information from expert's knowledge (VIs, ecosystems maps, climate regions, etc)





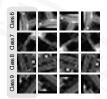




- Step 2 VSVs: perturbate SVs to which the solution should be invariant
- Step 3 Train a SVM with both SVs and VSVs

Example 1: encoding invariance to rotations:

- Quickbird image + 18 spatial features
- Size: 329 × 347 pixels
- 9 classes
- VSVM encodes invariance to rotation!

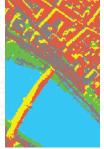


- Both classifiers show high classification scores
- VSVM improves classification score over +7%
- VSVM is however more computationally demanding

Example 2: encoding invariance to shadows and illumination changes:

- Multispectral image acquired by DAIS7915 over Pavia (Italy) [CampsValls11]
 - 9-class urban classification problem
 - Dominated by directional features and relatively high spatial resolution
 - Presence of shadows in the streets and the bridge
 - 50 training spatial-spectral samples only (4×4 patches)
- Invariance coding: exponential-decay function in [0.5, 1.76] μ m [Yamazaki09]

SVM (0.79±0.11)



VSVM (0.84±0.09)

How to integrate multi-source information?

- Spatial features
- Textural features
- Time-varying features
- Multi-sensor features
- Multi-angular features

Taxonomy of spatial-spectral classification approaches:

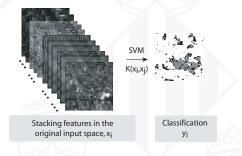
Type of Approach	Model	Idea			
Spatial filters ex- traction	Co-occurrence	Extract texture based on statistics of pairs of pixels in a neighborhood			
	EMP	Multiscale mathematical morphology (based on size)			
	EMAP	Multiscale mathematical morphology (va- riety of attribute types)			
Spatial-spectral segmentation	Segmentation and classifi- cation based on majority voting	All pixels are assigned to the most frequent class inside a segmented region			
	Segmentation and classifi- cation based on markers	Most reliably classified pixels are selected as "region markers" for segmentation			
	Semi-supervised hierarchi- cal clustering tree	Returns both classification and confidence maps. Active learning used to select infor- mative samples.			
Advanced spatial- spectral	Composite and multiple kernels	Balances between spatial and spectral in- formation with dedicated kernels			
classification	Graph kernels	Takes into account higher order relations in each pixel neighborhood			
	MRF	Markov Random Field Modeling (proba- bilistic)			

Stacked approach

• Stacking features that characterize a pixel:

 $\mathbf{x}_i \leftarrow [\mathbf{x}_i^{\omega}, \mathbf{x}_i^{c}, \mathbf{x}_i^{r}, \mathbf{x}_i^{\rho}, \mathbf{x}_i^{s}, \mathbf{x}_i^{t}, ...]$

• Compute matrix K and solve an SVM with the new samples x_i.



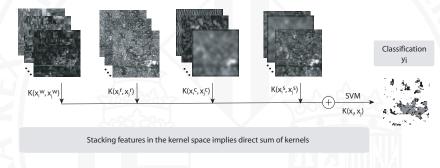
• Problems:

- Dimensionality of the samples is increased extraordinarily!
- ② Cross-relationships among features are not taken into account.
- This would be impractical for neural networks, for example.

Kernel-based spatial-spectral HSI classification

• Some properties of kernel methods (and SVM):

$$\begin{split} & \mathcal{K}(\mathbf{x}_i, \mathbf{x}_j) = \mathcal{K}_1(\mathbf{x}_i, \mathbf{x}_j) + \mathcal{K}_2(\mathbf{x}_i, \mathbf{x}_j) \\ & \mathcal{K}(\mathbf{x}_i, \mathbf{x}_j) = \mathcal{K}_1(\mathbf{x}_i, \mathbf{x}_j) \cdot \mathcal{K}_2(\mathbf{x}_i, \mathbf{x}_j) \\ & \mathcal{K}(\mathbf{x}_i, \mathbf{x}_j) = \eta \mathcal{K}_1(\mathbf{x}_i, \mathbf{x}_j), \quad \eta > 0 \end{split}$$



Supervised

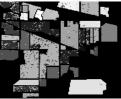
	Overall accuracy [%]	κ statistic
Spectral classifiers		
Euclidean [Tadjudin98]	48.23	
bLOOC+DAFE+ECHO [Tadjudin98]	<u>82.91</u>	—
K_{ω} [CampsValls04]	88.55	0.87
Spatio-spectral classifiers [CampsValls06]		
Mean		
Ks	84.55	0.82
$K_{\{s,\omega\}}$	94.21	0.93
$K_s + K_\omega$	92.61	0.91
$\mu K_s + (1-\mu)K_\omega$	95.97	0.94
$K_s + K_\omega + K_{s\omega} + K_{\omega s}$	94.80	0.94
Mean and variance		
Ks	88.00	0.86
$K_{\{s,\omega\}}$	94.21	0.93
$K_s + K_\omega$	95.45	0.95
$\mu \mathcal{K}_s + (1-\mu)\mathcal{K}_\omega$	96.53	0.96

- Linear methods offer poor results
- The proposed classifiers improve results in all cases (+[5-11]%)
- Simplest kernel combinations yield very good results

Ground truth

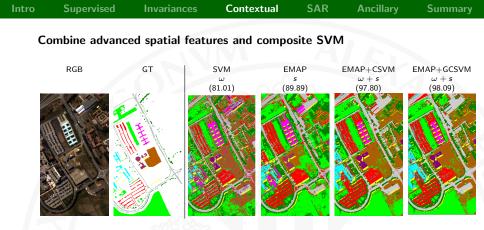
Spectral (88.55%)

Spatial (84.55%)



Spatio-spectral (95.53%)

- More homogeneous classification maps
- State of the art results
- Easy framework for multisource data fusion



- ROSIS-03 Pavia University area data set (103 spectral channels and spatial resolution 1.3m), 9 classes
- Spatial components:

Benediktson11 Extended Morphological Profiles (EMP) CampsValls06 Cross-kernels composite SVM (CSVM) Li13 Generalized composite kernels (GCSVM)

Multi-sensor fusion kernels

Idea: Build dedicated kernels for the optical (x^o_i), and the radar (x^r_i) feature samples, and combine them in the kernel.

O Three formulations:

• The stacked features approach:

$$\mathbf{x}_i = [\mathbf{x}_i^o, \mathbf{x}_i^r], \qquad \mathcal{K}_{\{o, r\}} \equiv \mathcal{K}(\mathbf{x}_i, \mathbf{x}_j) = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j)
angle$$

• The direct summation kernel:

$$K(\mathbf{x}_i, \mathbf{x}_j) = K_o(\mathbf{x}_i^o, \mathbf{x}_j^o) + K_r(\mathbf{x}_i^r, \mathbf{x}_j^r)$$

• The cross-information kernel:

$$K(\mathbf{x}_i, \mathbf{x}_j) = K_o(\mathbf{x}_i^o, \mathbf{x}_j^o) + K_r(\mathbf{x}_i^r, \mathbf{x}_j^r) + K_{or}(\mathbf{x}_i^o, \mathbf{x}_j^r) + K_{ro}(\mathbf{x}_i^r, \mathbf{x}_j^o)$$

Example: Detection of classes 'urban' vs. 'non-urban' [Camps-Valls08]

- 'Urban Expansion Monitoring (UrbEx) ESA-ESRIN DUP' Project
- 2 sensors (ERS2 SAR y Landsat TM)
- 2 dates (1995 and 1999) over Rome

Features and pre-processing

- \bigcirc Images were co-registered with ISTAT data (at subpixel level, <15m res.)
- SAR images were filtered for 'speckle'.
- Original features: 7 spectral bands, 2 backscattering intensities plus coherence.
- Additionally: (i) optical features are mean-filtered, and (ii) SAR images are Gabor-filtered, at different scales ($\theta = 1, \dots, 4$) and orientations ({0, 45, 90, 135

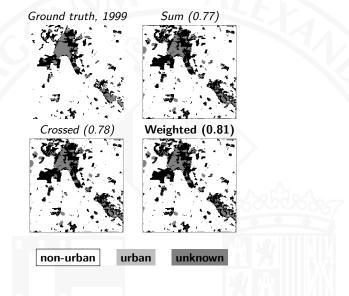
Accuracy and flexibility

- Different kernel-based methods integrating spectral, contextual, textural and temporal information.
- Different levels of complexity and versatility.
- Linear and non-linear (RBF) kernels.

	Spatio	Multi-	Temporal				
	spectral	sensor	Sum	Crossed	Weighted		
SVM	Sum	Standard	83.2 (0.45)	68.2 (0.61)	70.4 (0.64)		
(LIN)	Crossed	Standard	81.4 (0.49)	69.2 (0.62)	71.4 (0.63)		
	Sum	Sum	84.1 (0.51)	70.2 (0.63)	73.4 (0.72)		
SVM	Sum	Standard	91.4 (0.67)	83.1 (0.70)	89.5 (0.78)		
(RBF)	Crossed	Standard	92.1 (0.69)	89.2 (0.71)	88.8 (0.77)		
	Sum	Sum	93.2 (0.77)	94.3 (0.78)	93.3 (0.81)		

- All the *proposed temporal kernels* improve the results of (1) considering the spectral info alone, (2) or even the spatio-spectral information.
- The weighted summation kernel is the best choice.
- In all cases, non-linear RBF kernels yield better results.

Visual inspection



Why not considering additional information?

- Vegetation indices, e.g. NDVI
- Clustering maps
- Max vote of all trained classifiers
- Abundance maps
- Ecosystems maps
- Climate regions
- ...

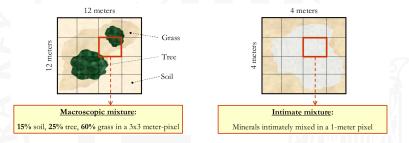
Nice idea, yet problematic: dimensionality increases again! Solution: feature selection together with sparse classifiers!

- Hyperspectral image classification is a challenging problem
- High dimensional feature spaces scarcely populated!
- Statistical approaches:
 - Supervised algorithms
 - Unsupervised algorithms
 - Semisupervised algorithms
 - One-class and target detection
- Kernel methods are the current state-of-the-art classifiers
- More info in the classifiers implies improved signal model
 - More samples (by sampling or synthesizing)
 - More meaningful features
 - More concurrent sensors (SAR, LiDAR, VHR, etc)
 - Additional ancillary information
 - Multitemporal information

Part 4: Spectral unmixing and abundance estimation

Unmixing hyperspectral pixels ...

- With a limited spatial resolution, spectral vectors are no longer pure but mixtures of the spectral signatures of the materials present in the scene
- A small fraction of the available pixels can be considered as *pure*, i.e. composed by a single material
- The field of spectral mixture analysis (or *spectral unmixing*) is devoted both to identify the most probable set of pure pixels (called *endmembers*) and to estimate their proportions (called *abudances*) in each pixel
- When the endmembers have been identified, every single pixel in the image can be synthesized as a linear (or nonlinear) combination of them



The main applications of spectral unmixing:

1 Standard mapping applications.

Keshava02 Excellent introduction to crop and mineral mapping Sohn97 Abundance estimation of vegetation in deserts Adams95 Abundance maps for image classification to detect landcover changes in the Amazonia Roberts98 multiple endmember spectral mixture models to map chaparral Elmore00 quantify vegetation change in semiarid environments Goodwin05 assessed plantation canopy condition from airborne imagery using spectral mixture analysis via fractional abundance estimation Pacheco10 crop residue mapping in multispectral images Zhang04 deconvolution of lichen and rock mixtures Wu2004 to monitor urban composition using ETM+ images Dop11 extract features and then performing supervised urban image classification

The main applications of spectral unmixing:

2 Multitemporal studies.

Shoshany02	a multi-date adaptive unmixing was applied to analyze
	ecosystem transitions along a climatic gradient

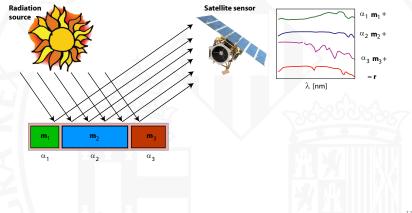
- Lobell2004 inferred cropland distributions from temporal unmixing of MODIS data
 - Gomez11 multitemporal unmixing of medium spatial resolution images was conducted for landcover mapping

3 Multisource models.

Puyou94 multiple linear regression as a tool for unmixing coarse spatial resolution images acquired by AVHRR
 GarciaHaro96 alternative approach which appends the high spatial resolution image to the hyperspectral data and computes a mixture model based on the joint data set.
 Zhukov99 spatial and spectral data fusion
 Amoros11 spatial unmixing technique to obtain a composite image with the spectral and temporal characteristics of the medium spatial resolution image and the spatial detail of the high spatial resolution image

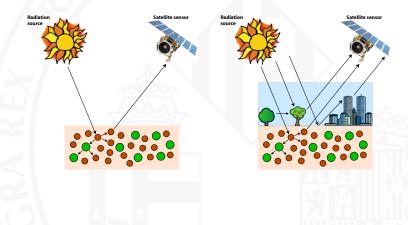
Illustration of the spectral linear mixing process

A given material is assumed to be constituted at a subpixel level by patches of distinct materials \mathbf{m}_i contributing linearly through a set of weights (or abundances) α_i to the acquired reflectance \mathbf{r}



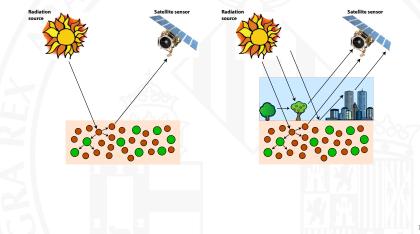
Linear versus nonlinear mixing model:

- Linear mixture model assumes that endmember substances are sitting side-by-side within the FOV
- Nonlinear mixture model:
 - Endmember components are randomly distributed throughout the FOV
 - Multiple scattering effects



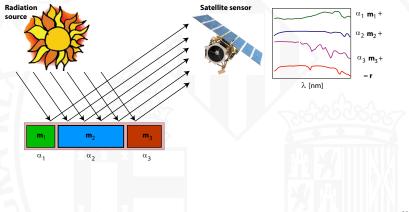
Two nonlinear mixing scenarios:

- The intimate mixture model (left): the different materials are close
- The multilayered mixture model (right): interactions with canopies and atmosphere happen sequentially or simultaneously



Let's go on with a linear unmixing model:

- Simple, tractable, mathematically convenient
- Effective in many real settings
- Acceptable approximation of the light scattering mechanisms
- Computationally feasible



The linear mixing model:

$$\mathbf{r} = \mathbf{M} \boldsymbol{\alpha} + \mathbf{n}$$

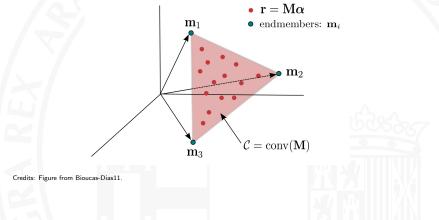
- r be a $B \times 1$ reflectance vector
- B is the total number of bands
- \mathbf{m}_i is the signature of the *i*th endmember, $i = 1, \ldots, p$
- $M = [m_1, m_2, ..., m_p]$ is the *mixing matrix* and contains the signatures of the endmembers present in the observed area,
- $\boldsymbol{\alpha} = [\alpha_1, \alpha_2, \dots, \alpha_p]^\top$ is the fractional abundance vector
- $\mathbf{n} = [n_1, \dots, n_B]^\top$ models additive noise in each spectral channel.

The linear unmixing problem:

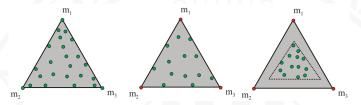
 $\mathbf{r} = \mathbf{M} \boldsymbol{\alpha} + \mathbf{n} \quad s.t. \quad \boldsymbol{\alpha} \ge \mathbf{0}, \quad \mathbf{1}_{\rho}^{\top} \boldsymbol{\alpha} = \mathbf{1}_{N}$

- Given a set of reflectances $\mathbf{r}_i, i = 1, \dots, N$, estimate appropriate values for both \mathbf{M} and $\boldsymbol{\alpha}$
- Two physically reasonable constraints:
 - all abundances must be positive, $\alpha_i \geq 0$,
 - 2 they have to sum one, $\sum_{i=1}^{p} \alpha_i = 1$

The simplex representation: Illustration of the simplex set C for p = 3. Points in red denote the available spectral vectors **r** that can be expressed as a linear combination of the *endmembers* \mathbf{m}_i , i = 1, ..., 3, (vertices circled in green). The subspace formed defined by these endmembers is the convex hull C of the columns of **M**



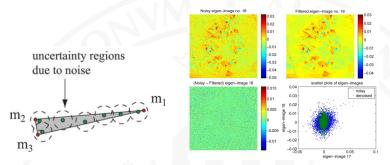
The minimum volume simplex approximation not always works:



- Left and middle: identifiable!
- Right: not identifiable because of a highly mixed scenario!
- Alternative: statistical models may better capture the data distribution

Credits: Figure from Bioucas-Dias11.

The minimum volume simplex approximation may be affected by noise:



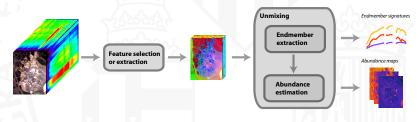
- Endmembers \mathbf{m}_2 and \mathbf{m}_3 are too close, thus \mathbf{M} is badly conditioned.
- The effect of noise is evident, as represented in the uncertainty regions
- A preliminary step is to check the SNR (and eventually apply MNF):

$$\mathsf{SNR} = \frac{\mathbb{E}[\|\mathbf{r}\|^2]}{\mathbb{E}[\|\mathbf{n}\|^2]} = \frac{\mathsf{trace}(\mathbf{C}_r)}{\mathsf{trace}(\mathbf{C}_n)}$$

Credits: Figure from Bioucas-Dias11.

Spectral unmixing steps:

- a. *Dimensionality reduction*. Spectral unmixing intrinsically assumes that the dimensionality of hyperspectral data is lower and can be expressed in terms of the endmembers. Some methods require a previous dimensionality reduction, either feature selection or extraction, e.g. PCA, MNF, ...
- b. *Endmember extraction*. Search of a proper vector basis to describe all the materials in the image:
 - Find the most extreme spectra, which are the purest and those better describing the vertices of the simplex
 - Find the most statistically different pixels
- c. Abundance estimation. Exploits linear or nonlinear regression techniques for estimating the mixture of materials, called abundance, in each image pixel, e.g. linear regression, neural networks and support vector regression



The first step in the spectral unmixing analysis tries to estimate the number of endmembers present in the scene

- The number of endmembers is assumed to be lower than the number of bands *B*
- Statistical and geometrical interpretation: spectral vectors lie in a low-dimensional linear subspace
- Endmember determination reveals the intrinsic dimensionality of the data and reduces the computational complexity of the unmixing algorithms

125 / 178

How to estimate the intrinsic dimensionality of the subspace

O Most of the methods involve solving eigenproblems

Jollife86 PCA looks for the explained variance of the projected data (scores)

Lee90 MNF looks for the explained variance of the projected data and discounts the noisy components

Bioucas-Dias05 HySime looks for the explained SNR by minimizing the MSE error term

Information-theoretic approaches

- Wang06 ICA and projection pursuit looks for a 'right' number of statistically independent components
- Ifarraguerri00 Minimum description length (MDL)

Harsanyi93 Neyman-Pearson detection method (called HFC)

Chang04 Virtual dimensionality (VD) finds the highest number for which the correlation matrix have smaller eigenvalues than the covariance matrix

Chang04 Noise-whitened HFC (NWHFC) removes the second-order noise statistical correlation

Nonlinear (higher-order) methods and manifold learning

Bachmann06 ISOMAP

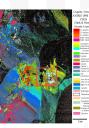
Yangchi05 locally linear embedding (LLE)

Standard benchmark hyperspectral image dataset:

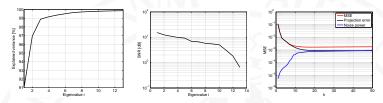
AVIRIS Cuprite reflectance data set,

http://aviris.jpl.nasa.gov/html/aviris.freedata.html

- AVIRIS spectrometer over the Cuprite Mining area in Nevada (USA) in 1997
- Widely used to validate the performance of many spectral unmixing and abundance estimation algorithms
- U.S. Geological Survey (USGS) in the form of various mineral spectral libraries, http://speclab.cr.usgs.gov/spectral-lib.html
- Many reported materials: buddingtonite, calcite alunite, kaolinite, and montmorillonite, chalcedony, dickite, halloysite, andradite, dumortierite, and sphene.
- Most mixed pixels in the scene consist of alunite, kaolinite, and muscovite



PCA, MNF, and HySime



- PCA: 8 components retain more than 99.95% of the explained variance
- MNF yields a higher number of distinct pure pixels, p=13
- HySime estimates p=18 (minimum MSE)

HFC and **NWHFC** are estimated with the false-alarm probability set to different values $P_f = \{10^{-2}, \dots, 10^{-6}\}$, and give rise to *p* around 14

	A	-	PF		000
Method	10^{-2}	10^{-3}	10^{-4}	10^{-5}	10^{-6}
HFC	23	20	17	16	14
NWHFC	21	18	16	14	12

Two main families of methods: geometrical vs statistical

Family	Method	Brief description	Auto- matic	CPU cos
Geometrical (pure-pixel)	IEA [Neville et al., 1999]	Iteratively selects endmembers that minimize error in the unmixed image	\checkmark	High
	VCA[Nascimento and Bioucas-Dias, 2005a]	Iteratively projects data onto a direction orthogonal to the subspace spanned by the previous endmembers	\checkmark	Low
	PPI [Boardman, 1993]	Projects spectra onto many random vectors, stores the most extreme distances to select endmembers	\checkmark	Medium
	N-FINDR [Winter, 1999]	Finds the pixels defining the simplex with maximum volume trough inflation	~	Medium
	SGA [Chang et al., 2006]	Iteratively grows a simplex by finding the vertices that yield maximum volume	~	Medium
	SMACC[Gruninger et al., 2004]	Iteratively incorporates new endmembers by growing a convex cone representing the data	×	High
Geometrical (min-volume)	SISAL [Bioucas-Dias, 2000]	Robust version of min-volume by allowing violation of the positivity constraint	\checkmark	Low
	CCA [Ifarraguerri and Chang, 1999]	Iteratively selects endmembers maximizing the correlation matrix eigenspectrum, forces positive endmembers	\checkmark	Low
P	MVES [Chan et al., 2009]	Implements a cyclic minimization of a series of linear programming problems to find the min-vol simplex	\checkmark	Low
	MVT-NMF[Miao and Qi, 2007]	Minimizes a regularized problem: a term minimizing the approximation error of NMF and another constraining the volume of the simplex	×	Low
	ICE [Berman et al., 2004]	Similar to MVT-NMF but replaces the volume by sum of squared distances be- tween all simplex vertices	×	Mediun
	SPICE (also sparse) Zare and Gader, 2007	Extension of ICE with sparsity-promoting priors	~	Mediun
	ORASIS [Bowles et al., 1997]	Iterative procedure with several modules involving endmember selection, unmix- ing, spectral libraries and spatial postprocessing	×	High
Statistical (info. theory)	ICA [Bayliss et al., 1997]	Standard formulation to retrieve the mixing matrix M. Assumes independence of the sources	\checkmark	Low
	DECA[Nascimento and Bioucas-Dias, 2007]	Forces a mixture of Dirichlet densities as prior for the abundance fractions		Low
Statistical (machine learning)	SVDD (also geometrical) [Broadwater et al., 2009]	Hypersphere in kernel space, rejection ratio set to zero	V	Low
	EIHA [Graña et al., 2009]	Lattice auto-associative memories + image segmentation	1	High
Statistical (sparse models)	BP/OMP [Pati et al., 2003]	Greedy algorithm based on orthogonal basis pursuit	\checkmark	Low
-	BPDN [Chen et al., 2001]	Basis pursuit algorithm with a relaxation to solve the BP/OMP problem	\checkmark	Low
	ISMA [Rogge et al., 2006]	Iteratively finds an optimal endmembers set by examining the change in RMSE after reconstructing the original scene using the estimated fractional abundance	\checkmark	Low

Let's see the main differences

 Several representative methods: 1) pure-pixel geometrical approaches (IEA, VCA, PPI and NFINDR); 2) SISAL for geometrical minimum volume approaches; 3) ICA for the information-theoretic-based methods; and 4) SVDD target detection and EIHA for the machine learning based approaches

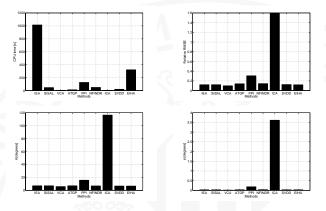
• Scores between estimated \hat{m} and closest m endmember in the USGS db:

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\hat{\mathbf{m}}_{i} - \mathbf{m}_{i})^{2}}$$

$$SAM = a\cos\left(\frac{\hat{\mathbf{m}}^{\top} \mathbf{m}}{\|\hat{\mathbf{m}}\| \|\mathbf{m}\|}\right)$$

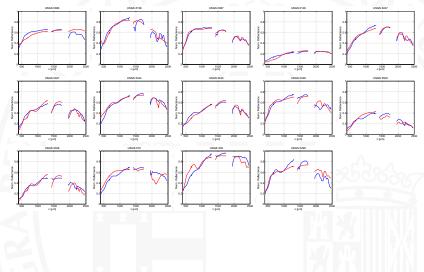
$$SID(\hat{\mathbf{m}}, \mathbf{m}) = \sum_{i} p_{i} \log\left(\frac{p_{i}}{\hat{p}_{i}}\right) + \sum_{i} \hat{p}_{i} \log\left(\frac{\hat{p}_{i}}{p_{i}}\right), \quad \mathbf{p} = \mathbf{m} / \sum_{i} m_{i}$$

• We will seek for p = 14 endmembers using all methods



- All methods achieve RMSE<0.2, except for PPI and ICA
- Similar trends are observed for SAM and SID
- VCA outperformed the rest of the methods in accuracy (in all measures)
- VCA showed very good computational efficiency, closely followed by SVDD, SISAL and IEA
- ICA does not work all (does not meet problem assumptions)
- Very good performance of SVDD

Estimated signatures are in general close to the laboratory spectra



Linear standard models for estimation

• The unconstrained least-squares problem is simply solved by

$$\hat{\boldsymbol{lpha}} = \boldsymbol{\mathsf{M}}^\dagger \boldsymbol{\mathsf{r}} = (\boldsymbol{\mathsf{M}}^\top \boldsymbol{\mathsf{M}})^{-1} \boldsymbol{\mathsf{M}}^\top \boldsymbol{\mathsf{r}}$$

- The sum-to-one constraint means that the LS problem is constrained by $\sum \alpha_i = 1$, which can be solved via Lagrange multipliers
- The non-negativity constraint is not as easy to address in closed-form

Linear advanced models for estimation

- Harsanyi94 Nonnegative constrained least squares and fully constrained least squares
 - Keener06 Minimum variance unbiased estimator (MVUE): under the assumption of additive noise, \mathbf{n} , with covariance, \mathbf{C}_n , the minimum variance estimate of the abundances reduces to

$$\hat{\boldsymbol{lpha}} = (\boldsymbol{\mathsf{M}}^{ op} \boldsymbol{\mathsf{C}}_n^{-1} \boldsymbol{\mathsf{M}})^{-1} \boldsymbol{\mathsf{M}}^{ op} \boldsymbol{\mathsf{C}}_n^{-1} \boldsymbol{\mathsf{r}}$$

Li04 use wavelet features to improve the linear estimation Debba06 used derivative spectra in simulated annealing procedures Chang06 uses a weighted abundance-constrained linear spectral mixture analysis

Bioucas10 reviews the field, including sparse LASSO regression

Nonlinear models for estimation

- An easy way to compensante the (strong) assumption of linear mixture models
- Several regression approaches available

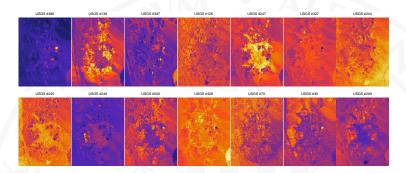
Atkinson97 proposes multilayer perceptrons Schowengerdt97 introduces nearest neighbor classifiers Brown00 includes support vector machines for unmixing Broadwater09 extends the NNCLS method to kernel space

• A simple algorithm for doing nonlinear regression with kernels consists of iterating the equations:

 $\hat{\alpha} = (K(\mathbf{M}, \mathbf{M}))^{-1} [K(\mathbf{M}, \mathbf{r}) - \lambda]$ $\lambda = K(\mathbf{M}, \mathbf{r}) - K(\mathbf{M}, \mathbf{M})\hat{\alpha},$

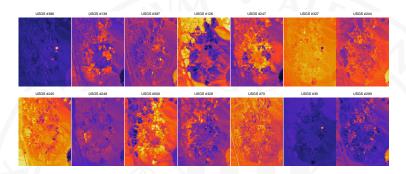
where λ is the Lagrange multiplier vector used to impose the non-negativity constraints of the estimated abundances. Nevertheless, the method does not incorporate the sum-to-one constraint. We refer to this method as the Kernel NonNegativity Least Squares (KNNLS).

Least Squares Abundance Estimation



- The obtained maps nicely resemble the available geological maps.
- Linear and nonlinear methods yield similar results
- The use of the KNNLS achieves more detailed description of the spatial coverage (see e.g. minerals #386 and #245) or less noisy maps (see e.g. minerals #126, #139, and #299)
- KNNLS has two problems: 1) tuning of the σ parameter for the kernels, and 2) the sum-to-one constraint is met in a trivial way.

Kernel Least Squares Abundance Estimation



- The obtained maps nicely resemble the available geological maps.
- Linear and nonlinear methods yield similar results
- The use of the KNNLS achieves more detailed description of the spatial coverage (see e.g. minerals #386 and #245) or less noisy maps (see e.g. minerals #126, #139, and #299)
- KNNLS has two problems: 1) tuning of the σ parameter for the kernels, and 2) the sum-to-one constraint is met in a trivial way.

Recent years have witnessed advances in three main directions

Sparse models Spectral vectors can be expressed as linear combinations of a very few pure spectral signatures obtained from a (potentially very large) spectral library

Contextual information Inclusion of spatial information helps regularize the solution as close-by pixels in the image should correspond/identify similar elements

Nonlinear models more complex models of the mixture process are assumed: nonlinear mixing holds when the light suffers multiple scattering or interfering paths, which implies that the acquired energy by the sensor results from the interaction with many different materials at different levels or layers

Sparse models:

Intuition/Motivation Spectral vectors can be expressed as linear combinations of a *very few* pure spectral signatures obtained from a (potentially very large) spectral library

Candes06,Donoho06,Blumensath09 Sparse reconstruction/compressive sensing: A sparse signal is exactly recoverable from an underdetermined linear system of equations in a computationally efficient manner via convex/non-convex programming

The linear sparse mixing model:

• A standard linear mixing model

$\mathbf{r} = \mathbf{M} \boldsymbol{\alpha} + \mathbf{n}$

- Only some components of α are active, many shrink to zero!
- The sparse unmixing problem: given r and M, find the sparsest solution:

$$\min \| \boldsymbol{\alpha} \|_0 \quad s.t. \quad \mathbf{r} = \mathbf{M} \boldsymbol{\alpha}$$

Sparse models:

Intuition/Motivation Spectral vectors can be expressed as linear combinations of a *very few* pure spectral signatures obtained from a (potentially very large) spectral library

Candes06,Donoho06,Blumensath09 Sparse reconstruction/compressive sensing: A sparse signal is exactly recoverable from an underdetermined linear system of equations in a computationally efficient manner via convex/non-convex programming

The linear sparse mixing model:

• A standard linear mixing model

$\mathbf{r} = \mathbf{M} \boldsymbol{\alpha} + \mathbf{n}$

- Only some components of α are active, many shrink to zero!
- The sparse unmixing problem: given r and M, find the sparsest solution:

$$\min_{\alpha} \| \boldsymbol{\alpha} \|_{0} \quad s.t. \quad \mathbf{r} = \mathbf{M} \boldsymbol{\alpha}$$

Nice idea: interpretable and compact solutions!

Sparse models:

Intuition/Motivation Spectral vectors can be expressed as linear combinations of a *very few* pure spectral signatures obtained from a (potentially very large) spectral library

Candes06,Donoho06,Blumensath09 Sparse reconstruction/compressive sensing: A sparse signal is exactly recoverable from an underdetermined linear system of equations in a computationally efficient manner via convex/non-convex programming

The linear sparse mixing model:

• A standard linear mixing model

$\mathbf{r} = \mathbf{M} \boldsymbol{\alpha} + \mathbf{n}$

- Only some components of α are active, many shrink to zero!
- The sparse unmixing problem: given r and M, find the sparsest solution:

 $\min_{\alpha} \|\alpha\|_0 \quad s.t. \quad \mathbf{r} = \mathbf{M}\alpha$

- Nice idea: interpretable and compact solutions!
- Problem: this is an NP-hard problem!

Convex relaxation optimization strategies

```
Chen01 Basis Pursuit (BP)
```

 $\min_{\alpha} \|\boldsymbol{\alpha}\|_1 \quad s.t. \quad \mathbf{r} = \mathbf{M}\boldsymbol{\alpha}$

Chen01 BPDN - BP denoising

 $\min_{\boldsymbol{\alpha}} \|\boldsymbol{\alpha}\|_1 \quad s.t. \quad \|\mathbf{r} - \mathbf{M}\boldsymbol{\alpha}\|_2 \leq \delta$

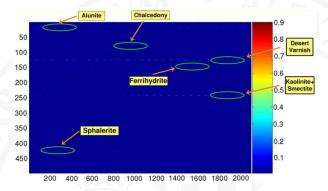
Tibshirani96 (LASSO)

$$\min_{\boldsymbol{\alpha}} \|\mathbf{r} - \mathbf{M}\boldsymbol{\alpha}\|_2^2 + \lambda \|\boldsymbol{\alpha}\|_1$$

Approximation strategies

Ji08 Bayesian CS Needell09 Matching Pursuit Blumensath09 Iterative Hard Thresholding (IHT) Garg09 Gradient Descent Sparsification (GDS) Foucart10 Hard Thresholding Pursuit (HTP) Villa12 Message Passing (MP)

Results on the USGS Cuprite dataset



- Bad news: Hyperspectral libraries have poor theoretical bounds of recovery, i.e. low restricted isometric property (RIP)
- Good news: Hyperspectral mixtures are highly sparse, very often $p \leq 5$
- Surprising fact: Convex programs (BP, BPDN, LASSO, ...) yield much better empirical performance than non-convex state-of-the-art competitors

Credits: Figure from Bioucas-Dias12.

Spatial information: Inclusion of spatial information helps regularize the solution as closeby pixels in the image should correspond/identify similar elements

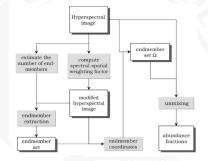
Main approaches:

Zortea09 Spatial preprocessing (SPP) estimates for each pixel a spatially-derived factor to weight relevance

Plaza02 Automatic morphological endmember extraction (AMEE) algorithm for spatial-spectral endmember extraction

Rogge07 spatial spectral endmember extraction (SSEE) uses a spatial averaging of spectrally similar endmember candidates found via singular value decomposition (SVD)

Credits: Figure from Plaza13.



All methods improve performance with spatial information, and there is an optimal window

Algorithm	Alunite	Buddigntonite	Calcite	Kaolinite	Muscovite	Mean
N-FINDR	9.960	7.710	12.08°	13.27°	5.240	9.65
OSP	4.81°	4.16°	9.620	11.14°	5.41°	7.03 ⁰
VCA	10.73°	9.04°	6.36 ⁰	14.05°	5.41°	9.12°
AMEE	4.81°	4.21 [°]	9.54 ⁰	8.74°	4.61°	6.38 ⁰
SSEE	4.81°	4.16 ⁰	8.48 ⁰	11.14°	4.620	6.64°
SPP+N-FINDR	12.81°	8.33°	9.83°	10.43°	5.28°	9.34°
SPP+OSP	4.95°	4.16°	9.960	10.90°	4.62°	6.92°
SPP+VCA	12.42°	4.040	9.37 ⁰	7.87 ⁰	6.18 ⁰	7.98 ⁰

Algorithm	ws = 0	ws = 3	ws = 5	ws = 7	ws = 9	ws = 11
OSP	4.791	1.862	1.836	2.656	2.656	3.538
N-FINDR	0.652	0.570	0.548	0.645	0.725	0.545
VCA	0.744	0.608	0.385	0.451	0.768	0.785

Most of the elements are better detected

		OSP				NFINDR				VCA			
USGS Signature u	ws = 0	ws = 3	ws = 5	ws = 9	ws = 0	ws = 3	ws = 5	ws = 9	ws = 0	ws = 3	ws = 5	ws = 9	
Alunite GDS84	7.67	11.94	-	-	-	9.45	-	-	-	10.45	10.45	-	
Alunite GDS82	8.00	6.52	7.26	7.26	6.87	10.90	7.21	8.00	6.47	-	-	6.47	
Alunite AL706	19.49	-	16.40	-	19.49	-	14.73	15.51	-	16.40	-	18.59	
Buddingtonite GDS85	10.17	10.17	10.17	10.17	7.21	8.33	10.17	10.17	10.17	10.17	10.17	10.17	
Calcite WS272	10.03	10.03	10.03	10.03	9.48	10.03	9.99	-	9.48	10.44	10.44	-	
Kaolinite KGa-1	10.22	10.22	10.22	10.22	10.22	10.22	10.22	10.22	19.70	17.03	22.83	17.78	
Muscovite GDS107	11.06	10.40	12.55	9.80	11.18	12.86	12.82	16.02	10.08	12.38	13.38	12.38	
Muscovite GDS108	10.07	10.07	10.22	9.90	9.79	9.79	9.41	9.91	12.78	9.29	13.04	9.80	
Muscovite GDS111	21.58	21.58	14.32	21.58	18.06	21.58	16.71	14.71	15.53	13.44	13.44	15.39	
larosite GDS99	19.22	18.37	20.31	16.22	18.95	16.22	20.31	14.79	16.22	19.53	16.22	15.48	
Montmorillonite SWy-1	10.68	8.28	6.95	6.95	11.39	12.60	9.53	7.28	11.97	17.43	11.41	18.48	
Pyrophyllite PYS1A	-	-	-	13.79	-	-	-	22.18	21.42	-	21.42	24.24	
Chalcedony CU91-6A	7.77	8.05	7.77	9.94	11.40	8.05	9.94	11.40	12.39	17.24	11.19	3.53	
Andradite GDS12	18.60	18.04	13.93	18.04	13.26	13.06	7.22	11.83	7.31	10.55	7.73	7.31	
Dumortierite HS190.3B	11.95	10.19	11.27	8.96	11.28	9.33	11.27	13.18	11.25	11.25	11.25	11.28	
Sphene HS189.3B	-	5.20	8.44	8.44	9.05	7.34	8.59	12.05	8.13	5.20	5.07	6.79	
Average	12.61	11.36	11.42	11.52	11.97	11.41	11.29	12.66	12.35	12.91	12.72	12.69	

Credits: Figure from Plaza13.

Nonlinear unmixing approaches consider either:

- A fully physically-based model requires inferring the spectral signatures and material densities based on the radiative transfer theory
- Alternative machine learning (statistical) approaches (plus prior physical constraints)

Main approaches:

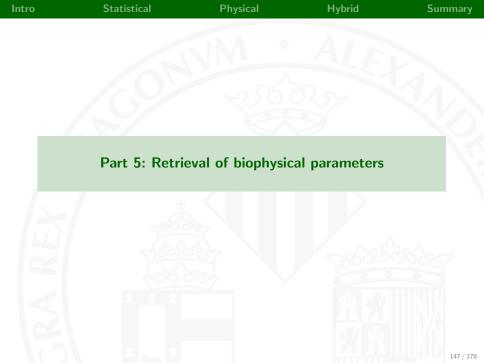
Borel-Gerst94 A multilayer model that gives rise to an infinite sequence of powers of products of reflectances

A second-order (bilinear approximation) is typically enough

- Hapke81 Microscopic mixing model at the albedo level and not at the reflectance level
- Broadwater09 proposed alternatives with (physically-inspired) kernel methods
 - Halimi11 Generalized bilinear models to handle scattering effects, e.g., occurring in the multilayered scene
- Guilfoyle01,Liu04,Altmann11,Licciardi11 Neural networks to nonlinearly reduce dimensionality and find a sparse basis
 - Altmann12 Supervised nonlinear spectral unmixing using a post-nonlinear mixing model

Heylen11, Heylen12 follows a similar approach to NFINDR: maximize the simplex volume computed with geodesic measures on the data manifold

- Moderate spatial resolution in hyperspectral images pose the mixing problem
- · Pixels are no longer pure, but a mixture of endmembers
- Linear and nonlinear mixture models can be adopted, yet the LMM dominates
- Many algorithmical approaches to find the purest/extreme pixels in the image
 - Geometrical (pure pixel or min-volume)
 - Statistical (information theory or machine)
- Three main steps to solve the problem
 - Determine/estimate how many endmembers are there
 - Find them
 - Use them for prediction
- Very active research topic, many novel approaches out there:
 - Sparse regression models
 - Structured and collaborative regression
 - Spatial-spectral information
 - Prior knowledge and physics in the statistical models
 - Parallelization of algorithms for fast unmixing

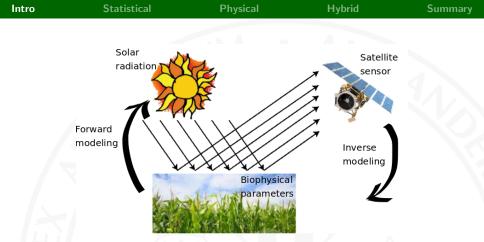


The problem:

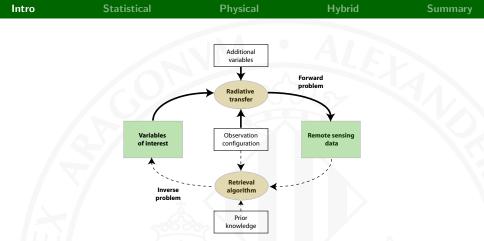
- Biophysical parameter retrieval is an essential step in modeling the processes occurring on Earth and the interactions with the atmosphere
- The analysis can be done at local or global scales by looking at bio-geo-chemical cycles, atmospheric situations, ocean/river/ice states, and vegetation dynamics [Lillesand08, Liang08, Rodgers00]
- Land/vegetation parameters are difficult to estimate [Liang04, Liang08]
- Main parameters: temperature, crop yield, biomass, leaf area coverage, chlorophyll content [Liang04, Liang08]

The objective: Transform measurements into biophysical parameter estimates **The data:**

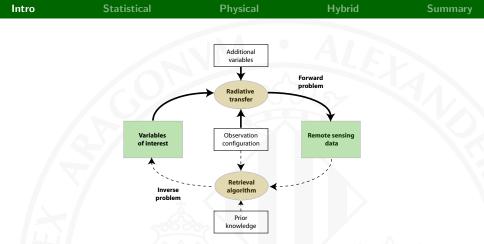
- Input data: satellite/airborne spectra, *in situ* (field) radiometers, or simulated spectra by RTMs
- Output results: estimation of a bio/geo-physical parameter



- Forward modeling: simulation of a database of reflectance spectra and parmaters pairs
- **Inverse modeling**: numerical/statistical inversion of the models from remote sensing data to estimate the parameters



- Forward modeling: simulation of a database of pairs of reflectance spectra and parameters
- **Inverse modeling**: numerical/statistical inversion of the models from remote sensing data to estimate the parameters



- The forward (or direct) problem involves radiative transfer models (RTMs)
- Solving the *inversion* problem implies the design of algorithms that, starting from the radiation acquired by the sensor, can give accurate estimates of the variables of interest, thus 'inverting' the RTM

The discrete forward model can be expressed as:

$$\mathbf{y} = f(\mathbf{X}, \boldsymbol{\theta}) + \mathbf{n}$$

- y is a set of measurements (e.g. expected radiance)
- X is a matrix of state vectors that describe the system (e.g. the parameters such as temperature or moisture)
- θ contains a set of controllable measurement conditions (e.g. combinations of wavelength, viewing direction, time, Sun position, and polarization)
- n is an additive noise vector
- $f(\cdot)$ is a function which relates **X** with **y**
- f is typically considered to be nonlinear, smooth and continuous

The discrete inverse model is defined as:

$$\hat{\mathbf{X}} = g(\mathbf{y}, \boldsymbol{\omega})$$

where $g(\cdot)$ is a nonlinear function, parametrized by weights ω that approximates the measurement conditions, **X**, using a set of observations as inputs, **y**

Taxonomy of model inversion methods, three main families:

• The *statistical* inversion models: parametric and non-parametric.

- Parametric models rely on physical knowledge of the problem and build explicit parametrized expressions that relate a few spectral channels with the bio-geo-physical parameter(s) of interest.
- Non-parametric models are adjusted to predict a variable of interest using a training dataset of input-output data pairs.
- Physical inversion models: try to reverse RTMs.
 - After generating input-output (parameter-radiance) datasets, the problem reduces to, given new spectra, searching for similar spectra in the dataset and assigning the most plausible ('closest') parameter.
- I Hybrid inversion models try to combine the previous approaches.

Intro	Statistical Ph	ysical	Hybrid	Summar
Тwo	main approaches:			
•	Devenuetrie regression, secure	and a second that the second second	I fam mander al	
	Parametric regression: assume a	an explicit mode	el for retrieval	
	Discrete band approaches (VIs)		ous spectral bands	
		Quasi-continuc Red-edge posit	ous spectral bands ion (REP)	
	Discrete band approaches (VIs)	Quasi-continuo	ous spectral bands ion (REP)	

ONON-parametric regression: do not assume explicit feature relations

Linear nonparametric models Stepwise multiple linear regression (SMLR) Partial least squares regression (PLSR) Ridge regression (RR) Least Absolute Shrinkage and Selection Operator (LASSO)

Nonlinear nonparametric models Decision trees, bagging and random forests Neural networks Kernel methods: SVR, RVM, KRR, GPR Bayesian networks

Intro	Sta	atistical	Physical	Hybrid	Summary
L	iterature reviev	v of parametric	approaches, VI:		
J	lordan69,Liang04	4,Liang08 simp	le ratios		
	Rouse74	Normalized dif	ference vegetation ind	ex (NDVI)	
	Gamon92	Photochemical	reflectance index (PF	RI)	
	Rondeaux96	Optimized soil	adjusted vegetation in	ndex (OSAVI)	
	Broge01	Triangular veg	etation index (TVI)		
	Daughtry00	Modified CabA	Absorption in Reflectar	nce Index (MCARI)	
	Haboudane02	Transformed C	ARI (TCARI)		
	Penuelas95	Structure Inser	nsitive Pigment Index	(SIPI)	
	Haboudane02	Combination o	of indices, TCARI/OSA	AVI	
т	Thenkabail00,Le	Maire04,LeMair	re08,Mariotto13 Quali	ity assessment	
Ļ	iterature reviev.	v of parametric	approaches, quasi-co	ontinuous bands:	
E	3aret92,Broge01	,Clevers02 Hig red-edge	h-order curve fitting o	f the first derivative in t	the
	Miller90	Inverted Gauss	ian models		
	Guyot88	Linear interpol	ation and extrapolatic	on 56000	
	Dawson98	Lagrangian int	erpolation		
	Baranoski05	Rational functi	ion		
E	Broge01,Oppelt0	4,Mutanga05,N	/lalenovsky06,Delegido	010 Integral-based indic	es
S	Sims02,Penuelas	94,Elvidge95,Za	arco-Tejada02,LeMaire	e04 Derivative-based ind	dices
	Clark84	Continuum ren	noval for absorption fe	eatures comparison	
		2			155 / 178

Intro	Statistical	Physical	Hybrid	Summary
Par	ametric approaches:			
	Weaknesses		Strengths	

- Makes only poorly use of the available information within the spectral observation; at most a spectral subset is used. Therefore, they tend to be more noise-sensitive as compared to full-spectrum methods
- Parametric regression puts boundary conditions at level of chosen bands, formulations and regression function.
- Statistical function accounts for one variable at the time.
- A limited portability to different measurement conditions or sensor characteristics
- No uncertainty estimates are provided. Hence the quality of the output maps remain unknown.

- Simple and comprehensive regression models; little knowledge of user required
- Fast in processing
- Computationally inexpensive

Literature review of linear nonparametric approaches

Yoder95, Fourty97, Bartholomeus12 Stepwise multiple linear regression (LR)

Liang08 Principal component regression (PCR)

Hansen02, Cho07, Darvishzadeh08, Ye08, Im09 Partial least squares regression (PLSR)

Addink07 ridge regression (RR)

Lazaridis11 Least Absolute Shrinkage and Selection Operator (LASSO)

Literature review of nonlinear nonparametric approaches

Im09,Im12,IeMaire11,Viedma12,Hansen02 decision trees

CampsValls14 bagging and random forests

Jin97,Paruelo97,Francl97,Kimes99,Kavzoglu03,Huang04,Jensen12,CampsValls13 artificial neural networks

Arenas12, Arenas13, Izquierdo14 kernel feature extraction (KPLS, KOPLS)

CampsValls06,CampsValls10 relevance vector machines (RVM)

Yang01, CampsValls06 support vector regression (SVR)

Peng11,Wang11,CampsValls12 kernel ridge regression (KRR)

Verrelst11,CampsValls12,Verrelst12,Lazaro13 Gaussian processes (GP) on Sentinel-2 data (KRR, GP)

Non-parametric approaches:	
Weaknesses	Strengths
 Training can be computational expensive. 	• Can make use of all bands (full spectral information).
 They can create over-complex models that do not generalize well from the training data (overfitting). Therefore, several regressors cannot be trained with high number of samples. Expert knowledge required, e.g. for tuning. However, toolboxes exist that automate some steps. Most of them act as a black box. Some regressors behave rather unstable when applied to data that deviate from statistically different from those used for training. 	 Build advanced, adaptive (nonlinear) models. Enables accurate and robust performances. Some methods cope well with redundancy and noisy data. Once trained, fast processing images. Some of them (e.g. NN, decision trees) can be trained with high numbers of samples (e.g. > 10⁶). Some methods provide insight in model development (e.g. GPR: relevant bands; decision trees: model structure). Some methods provide uncertainty intervals (e.g. GPR, KRR).

How to measure goodness of a model? Given two variables y_i and \hat{y}_i , i = 1, ..., N

- Error (residuals): $e_i = y_i \hat{y}_i$
- Bias: mean error (ME): $ME = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)$

Accuracy:

$$RMSE = \sqrt{\frac{1}{N}\sum_{i=1}^{N}(y_i - \hat{y}_i)^2}$$
 $MAE = \frac{1}{N}\sum_{i=1}^{N}|y_i - \hat{y}_i|$

• Goodness-of-fit: Pearson's correlation coefficient

Matlab:

>> r = corrcoef(Labels,PreLabels); R = r(1,2);

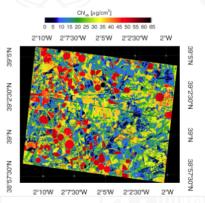
>> RESULTS = assessment(y,yhat,'regress')

Physical

Data: SPARC data set (2003, 2004; Barrax, Spain)

- Field data: Chl measured with CCM-200
- 30 additional bare soil samples
- CHRIS mode 1 (62 bands; 34m) nadir spectra
- Kernel ridge regression (and GPs) excel in predicting Chla-LAI-fCover over many parametric indices

dices proposed in relevant lite	ient R results of narrowband and bro rature tested in the present study also See Verrelst et al. 2011 and reference	g with re-
Method	Formulation	R
GI	Ren / Ruo	0.52(0.09)
GVI	(Resp-Rana)/(Resp+Rana)	0.66 (0.07)
Macc	$(R_{282}-R_{210})/(R_{282}+R_{082})$	0.20 (0.29)
MCARI	[(R200-R670)-0.2(R200-R550)]/(R200/R620)	0.35 (0.14)
MCAR12	$1.2[2.5(R_{800}-R_{020})-1.3(R_{800}-R_{320})]$	0.71(0.12)
mNDVI	$(R_{803}-R_{esn})/(R_{820}+R_{082}-2R_{145})$	0.77(0.12)
mNDVI ₇₀₅	$(R_{250}-R_{705})/(R_{250}+R_{705}-2R_{445})$	0.80 (0.07)
mSR 205	$(R_{350}-R_{445})/(R_{705}+R_{445})$	0.72(0.07)
MTCI	$(R_{754}-R_{709})/(R_{709}+R_{681})$	0.19(0.26)
mTVI	$1.2[1.2(R_{800}-R_{550})-2.5(R_{670}-R_{550})])$	0.73 (0.07)
NDVI	$(R_{800}-R_{670})/(R_{800}+R_{670})$	0.77 (0.08)
NDV12	(R250-R205)/(R250+R205)	0.81 (0.06)
NPCI	$(R_{680}-R_{430})/(R_{680}+R_{430})$	0.72(0.08)
NPQI	$(R_{415}-R_{435})/(R_{415}+R_{435})$	0.61(0.15)
OSAVI	$1.16(R_{800}-R_{670})/(R_{800}+R_{670}+0.16)$	0.79 (0.09)
PRI	$(R_{531}-R_{570})/(R_{531}+R_{570})$	0.77 (0.07)
PRI2	$(R_{570}-R_{539})/(R_{570}+R_{539})$	0.76(0.07)
PSRI	$(R_{680}-R_{500})/R_{350}$	0.79(0.08)
RDVI	$(R_{500} - R_{670})/\sqrt{(R_{500} + R_{670})}$	0.76 (0.08)
SIPI	$(R_{800}-R_{445})/(R_{800}-R_{600})$	0.78 (0.08)
SPVI	$0.4[3.7(R_{800}-R_{670})-1.2(R_{530}-R_{670})]$	0.70(0.08)
SR	R_{800}/R_{680}	0.63(0.12)
SR1	R_{150}/R_{200}	0.74(0.07)
SR2	R132/R090	0.68 (0.09)
SR3	R250/R550	0.75 (0.07)
SR4	R ₈₇₂ /R ₃₅₀	0.76 (0.10)
SRPI	R430/R680	0.76 (0.09)
TCARI	$3[R_{700}-R_{670}]-0.2(R_{700}-R_{550})(R_{700}/R_{470})]$	0.53 (0.13)
TVI	$0.5[120R_{750} \cdot R_{550}) \cdot 200(R_{670} \cdot R_{550})]$	0.70(0.10)
VOG	$R_{740}/(R_{720})$	0.76 (0.06)
VOG2	$(R_{734}, R_{747})/(R_{715}+R_{726})$	0.72(0.09)
NAOC	Area in [643,795]	0.79(0.09)
LR	Least squares	0.88 (0.06)
SVR Smola and Schölkopf 2004	RBF kernel	0.98 (0.03)
MSVR Tuia et al. 2011b	RBF kernel	0.98 (0.03)
GP Verrelst et al. 2011	Anisotropic RBF kernel	0.99(0.02)

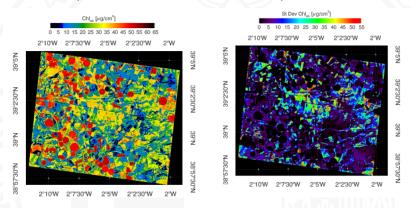


Intro

Physical

• Data: SPARC data set (2003, 2004; Barrax, Spain)

- Field data: Chl measured with CCM-200
- 30 additional bare soil samples
- CHRIS mode 1 (62 bands; 34m) nadir spectra
- Gaussian Processes also provide confidence intervals for the predictions (e.g. to identify poorly-sampled areas)



Motivation:

- Statistical approaches may lack transferability, generality, and robustness to new geographical areas
- Physical models can fill in the gap for estimating bio-geo-chemical structural state variables from spectra

Physically-based inversion:

- Rely on well-established physical laws encoded in radiation transfer models (RTMs), and a set of remote sensing measurements
- Physically-sound approach to retrieve biophysical variables over terrestrial surfaces because it is generally applicable [Dorigo07]
- The advantage of physical models is that they can be coupled from lower to higher levels (e.g. canopy level models build upon leaf models), thereby providing a physically-based linkage between optical EO data and biochemical or structural state variables

Intro

RTMs in forward mode create a database (LUT) covering a wide range of situations and configurations:

- Sensitivity studies of canopy parameters relative to diverse observation specifications
- Improved understanding of the Earth Observation (EO) signal as well as to an optimized instrument design of future EO systems

RTMs in inversion mode enables retrieving particular characteristics from EO data:

- The unique and explicit solution for a model inversion depends on the number of free model parameters relative to the number of available independent observations
- A prerequisite for a successful inversion is therefore the choice of a validated and appropriate RTM, which correctly represents the radiative transfer within the observed target
- When a unique solution is not achieved then more *a priori* information is required to overcome the ill-posed problem

Inversion of radiative transfer models

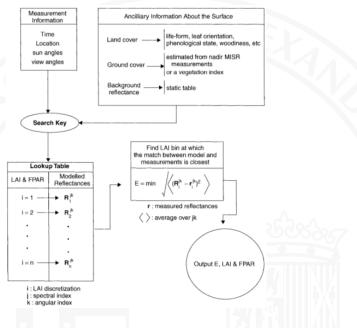
- Inverting an RTMs means: given a spectra, find the closest spectra in the database and return the corresponding parameter
- Given a set of *n* data pairs generated by an RTM, $\{\mathbf{y}, \mathbf{X}\}_{i=1}^{n}$,

$$\min_{\boldsymbol{\theta}}\{\|\mathbf{y}-f(\mathbf{X};\boldsymbol{\theta})\|^2\}$$

Two main approaches:

Jacquemoud95,Kuusk98,Zarco-Tejada01 Numerical optimization minimizes a function that calculates the RMSE between the measured and estimated quantities by successive input parameter iteration

Liang07 Look-up tables (LUT) precompute the model reflectance for a large range of combinations of parameter values, so the problem reduces to searching a LUT for the modeled reflectance that most resembles the measured one



ntro	Statistical	Physical	Hybrid	Summary
Role	of regularization:			
Dorig	go2009,Verrelst12c,Laurer constrain mod	nt2013 At a local so el parameters per la		owledge to
		ale, the MODIS LA structural and optic		
Richt	ter2009,Combal2002,Koet multiple best best solution)	z2005,Richter2011, solutions in the inve		
Richt	ter2009,Koetz2005,Richte for uncertainti	er2011 The addition es attached to meas		
Merc	oni2004,Fang05,Schlerf200 when only few inversion	05,Darvishzadeh201 well-chosen wavele		
Atzb	erger2004, Atzberger2012	Spatial information		
Koet	z2005,Lauvernet2008 Tei	mporal constraints		

At a global scale, the MODIS LAI inversion algorithm constrains the structural and optical parameter space per biome:

	Bio	me 1	Bior	ne 2	Bior	me 3	Bio	me 4	Bio	me 5	Bio	me 6
NDVI	LAI	FPAR	LAI	FPAR								
0.025	0	0	0	0	0	0	0	0	0	0	0	0
0.075	0	0	0	0	0	0	0	0	0	0	0	0
0.125	0.3199	0.1552	0.2663	0.1389	0.2452	0.132	0.2246	0.1179	0.1516	0.07028	0.1579	0.08407
0.175	0.431	0.2028	0.3456	0.1741	0.3432	0.1774	0.3035	0.1554	0.1973	0.08922	0.2239	0.1159
0.225	0.5437	0.2457	0.4357	0.2103	0.4451	0.2192	0.4452	0.218	0.2686	0.1187	0.324	0.1618
0.275	0.6574	0.2855	0.5213	0.2453	05463	0.2606	0.574	0.271	0.3732	0.1619	0.4393	0.2121
0.325	0.7827	0.3283	0.6057	0.2795	0.6621	0.3091	0.7378	0.3395	0.5034	0.2141	0.5629	0.2624
0.375	0.931	0.3758	0.6951	0.3166	0.7813	0.3574	0.878	0.393	0.6475	0.2714	0.664	0.3028
0.425	1.084	0.419	0.8028	0.3609	0.8868	0.3977	1.015	0.4425	0.7641	0.32	0.7218	0.333
0.475	1.229	0.4578	0.9313	0.4133	0.9978	0.4357	1.148	0.4839	0.9166	0.3842	0.8812	0.393
0.525	1.43	0.5045	1.102	0.4735	1.124	0.4754	1.338	0.5315	1.091	0.4402	1.086	0.4599
0.575	1.825	0.571	1.31	0.535	1.268	0.5163	1.575	0.5846	1.305	0.4922	1.381	0.5407
0.625	2.692	0.6718	1.598	0.6039	1.474	0.566	1.956	0.6437	1.683	0.568	1.899	0.6458
0.675	4.299	0.8022	1.932	0.666	1.739	0.6157	2.535	0.6991	2.636	0.702	2.575	0.7398
0.725	5.362	0.8601	2.466	0.7388	2.738	0.7197	4.483	0.8336	3.557	0.7852	3.298	0.8107
0.775	5.903	0.8785	3.426	0.822	5.349	0.8852	5.605	0.8913	4.761	0.8431	4.042	0.8566
0.825	6.606	0.9	4.638	0.8722	6.062	0.9081	5.777	0.8972	5.52	0.8697	5.303	0.8964
0.875	6.606	0.9	6.328	0.9074	6.543	0.9196	6.494	0.9169	6.091	0.8853	6.501	0.9195
0.925	6.606	0.9	6.328	0.9074	6.543	0.9196	6.494	0.9169	6.091	0.8853	6.501	0.9195
0.975	6.606	0.9	6.328	0.9074	6.543	0.9196	6.494	0.9169	6.091	0.8853	6.501	0.9195

Source: Myneni et al. (1999).

Intro	Statistical	Physical	Hybrid	Summary
Pł	hysical approaches:			
	Weaknesses		Strengths	
	 Computational-expensive becaus per-pixel based and therefore slov (however solutions based on a pr info have been developed) 	w (h <i>riori</i> re	eputation of physically-based lowever note influence of gularization factors)	$\langle 1 \rangle \rangle$
	 Quality depends on quality RT n prior knowledge and regularization 	nodels, M	enerally and globally applical ODIS) dditional information about	ble (e.g.
	 Quite complicated approach: parametrization and optimization required. 	un	incertainty of the retrievals (e siduals).	.g.
	 The imposed upper/lower bound the LUT had as a logical conseq that estimated parameters could beyond the imposed bounds. Th contradicts somewhat the physic 	uence not go is		3.7

approach as the prior information has an overwhelming influence

• LUT-based inversion methods are often strongly affected by noise and measurement uncertainty

Hybrid inversion method:

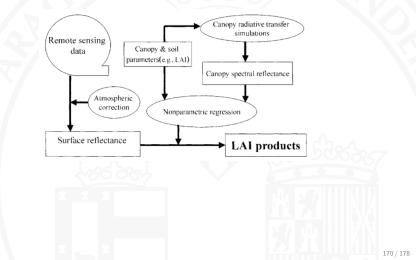
- The approach: combination of extensive simulations using a canopy RTM model (physical) and a non-parametric statistical inversion model (statistical)
- Advantanges:
 - Exploit the advantages of physically-based models and the flexibility and computational efficiency of nonparametric nonlinear regression methods.
 - Many possible combinations of RTMs and regression models
 - Very efficient approach

Shortcomings:

- How many parameters?
- How many radiance-parameters do we need in the database?
- How to include regularization with noise-fre data?

Intro	Statistical	Physical	Hybrid	Summary

A hybrid approach for LAI estimation [Liang03]



Physical

Hybrid

Automated Radiative Transfer Models Operator (ARTMO) http://ipl.uv.es/artmo/

ARTM0 [v. 3.03]	_ = ×
ile Models Forward Tools Help	3
Project Description	
Project Name:	
Comment	
Sensor No Sensor	×
	LUT Class by mep LUT Class by User

Physical

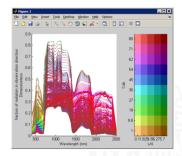
Hybrid

ARTMO can automatize the whole process ...

ARTHD [+, 3.03]	
Rodels Forward Tools Help	
Project Description	
Project Name	
Convert	
Server. No Server	r.
	LLT Oass by map LUT Oass by User

Sensor information									
(HPE) Mode 3		• F 10	a that filter						
		East	datails						
Monumeters			Rend name	He.	Max	Cartar	Puter		
Norondara									
Waxenumber (24) MH2 Index									
						581			
					\$73				
	1								
					187				
			4.41	100	80	116			

Chlorophyll (Cab - µgicm*) (0-100) -5
Dry matter (Cm - gicm ²) [0-0.05]
0.012 E Range E Total



172 / 178

Intro	Statistical	Physical	Hybrid	Summary

ARTMO can automatize the whole process ...

Parametric regression:

Physically-based inversión:

- Biophysical parameter estimation is perharps the most important (and challenging) problem in remote sensing
- Hyperspectral sensors provide an unprecedented piece of information for accurate estimation
- Traditional methods were focused on simplistic approaches using only few spectral bands
- New regression-based approaches alleviate the problems by exploiting the wealth of spectral information
- The common approaches consider:
 - Empirical models (e.g. Vegetation indices) are easy, fast but too general
 - Physical radiative transfer models are flexible but slow and require plant specific information (e.g. geometry, background) which is not always available
 - Non-parametric regression may offer a robust alternative that can be easily implemented in operative processing chains
- Problem: Scalability to many data, high dimensionality!
- Solution: Hybrid approaches + nonparametric sparse learning regression

Part 6: Bibliography, source code and resources

Some relevant books:

The ISP València Matlab Suite

HyperLabelMe Coming soon

- 50 labeled multi/hyper images
- An automatic system to evaluate classification accuracy

SimpleR

- 10 state-of-the-art nonparametric regression algorithms
- Trees, boosting, bagging, neural nets, kernel methods, Gaussian processes, etc.

SimFEAT

- 10 state-of-the-art feature extraction methods
- Linear and kernel methods: (k)PCA, (k)MNF, (k)CCA, (k)PLS, (k)OPLS, (k)KECA

SimpleClass

- 10 state-of-the-art supervised classifiers
- Trees, bagging, random forest, neural nets, SVMs, kernel machines, GPC, etc.

Simple to use, open source, re-useable, free!

Automated Radiative Transfer Models Operator (ARTMO)

http://ipl.uv.es/artmo/

ARTMO (v. 3.03)	_ III ×
Models Forward Tools Help	*
Project Description	
Project Name:	
Comment	
Sensor: No Sensor	
	LUT Class by map LUT Class by User

